Description

字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij = yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。对给定的两个字符序列,求出他们最长的公共子序列长度,以及最长公共子序列个数。

Input

第1行为第1个字符序列,都是大写字母组成,以”.”结束。长度小于5000。
第2行为第2个字符序列,都是大写字母组成,以”.”结束,长度小于5000。

Output

第1行输出上述两个最长公共子序列的长度。
第2行输出所有可能出现的最长公共子序列个数,答案可能很大,只要将答案对100,000,000求余即可。
 

Sample Input

ABCBDAB.
BACBBD.

Sample Output

4
7

HINT

首先,求最长子序列就是一个经典的dp了。f[i][j]表示s1到第i位,s2到第j位的最长子序列,f[i][j]=max(f[i-1][j-1]+(s1[i]==s2[j]),f[i-1][j],f[i][j-1])。

麻烦的就是方案的转移,我们另g[i][j]表示s1到第i位,s2到第j位的最长子序列的方案数。考虑以下的几种情况:

1.s1[i]==s2[j],f[i][j]=f[i-1][j-1]+1。g[i][j]=g[i-1][j-1]+(f[i-1][j]==f[i][j])*g[i-1][j]+(f[i][j-1]==f[i][j])*g[i][j-1],三种情况互不包含(g[i-1][j-1]指s1[i]与s2[j]配对;若f[i-1][j]==f[i][j]的话,一定有s1[i-1]与s2[j]配对(否则f不会相等),累加g[i-1][j];同理g[i][j-1]指的是s1[i]与s2[j-1]配对),直接加即可。

2.否则的话,f[i][j]=max(f[i-1][j],f[i][j-1]),若两者相等,则g[i][j]=g[i-1][j]+g[i][j-1]-g[i-1][j-1],因为中间部分两者都计算了一遍,否则就加上大者即可。

由于O(n^2)的空间肯定是开不下的,所以我们要利用滚动数组。

 #include<cstring>
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std; #define rhl (100000000)
#define maxn 5010
char s1[maxn],s2[maxn];
int f[][maxn],g[][maxn],n,m; inline void dp()
{
n = strlen(s1+),m = strlen(s2+);
s1[n--] = s2[m--] = ;
for (int i = ;i <= m;++i) g[][i] = ;
for (int i = ;i <= n;++i)
{
int p = i&,q = p^;
g[p][] = ;
for (int j = ;j <= m;++j)
{
g[p][j] = ;
if (s1[i] == s2[j])
{
f[p][j] = f[q][j-]+;
g[p][j] += g[q][j-];
if (f[q][j] == f[p][j]) g[p][j] += g[q][j];
if (f[p][j-] == f[p][j]) g[p][j] += g[p][j-];
}
else
{
f[p][j] = max(f[p][j-],f[q][j]);
if (f[p][j-] > f[q][j]) g[p][j] = g[p][j-];
else if (f[q][j] > f[p][j-]) g[p][j] = g[q][j];
else
{
g[p][j] = g[q][j]+g[p][j-];
if (f[q][j-] == f[p][j]) g[p][j] -= g[q][j-];
}
}
while (g[p][j] >= rhl) g[p][j] -= rhl;
while (g[p][j] < ) g[p][j] += rhl;
}
}
printf("%d\n%d",f[n&][m],g[n&][m]);
} int main()
{
freopen("2423.in","r",stdin);
freopen("2423.out","w",stdout);
scanf("%s%s",s1+,s2+);
dp();
fclose(stdin); fclose(stdout);
return ;
}

BZOJ 2423 最长公共子序列的更多相关文章

  1. bzoj:2423: [HAOI2010]最长公共子序列

    Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...

  2. bzoj 2423: [HAOI2010]最长公共子序列【dp+计数】

    设f[i][j]为a序列前i个字符和b序列前j个字符的最长公共子序列,转移很好说就是f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+(a[i]==b[j])) ...

  3. BZOJ 3304: [Shoi2005]带限制的最长公共子序列( LCS )

    求个LCS, 只是有了限制, 多加一维表示匹配到z串的第几个, 然后用滚动数组 ------------------------------------------------------------ ...

  4. 【BZOJ2423】最长公共子序列(动态规划)

    [BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...

  5. 【bzoj2423】最长公共子序列[HAOI2010](dp)

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423 题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数. 这道题的话,对于 ...

  6. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  7. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  8. [Data Structure] LCSs——最长公共子序列和最长公共子串

    1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...

  9. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

随机推荐

  1. delphi TFontDialog

      设置前先获得Memo的字体属性并设置给FontDialog 然后再设置MEMO的字体属性   //设置Memo的字体属性 procedure TForm1.mni_FontClick(Sender ...

  2. Node.js异步处理CPU密集型任务

    Node.js异步处理CPU密集型任务 Node.js擅长数据密集型实时(data-intensive real-time)交互的应用场景.然而数据密集型实时应用程序并非仅仅有I/O密集型任务,当碰到 ...

  3. PCAP研究

    一.  pcap简介 封装了OS提供的底层抓包技术,对外提供一些统一的抓包(及发送)接口.实现这些功能的其他技术包括:BPF(Berkeley Packet Filter),DLPI(Data Lin ...

  4. mac 终端常见指令

    基本命令 1.列出文件 ls 参数 目录名        例: 看看驱动目录下有什么:ls /System/Library/Extensions参数 -w 显示中文,-l 详细信息, -a 包括隐藏文 ...

  5. try{}catch(){}//根据异常信息使用不同的方法要怎么实现

    try{ }catch(Exception e){ if(e.getMessage().contains("123456798")) //使用e.getMessage().cont ...

  6. jsp页面表单的遍历要怎么写

    1.传统的方式使用request.getAttribute(“list”);获取表单的值, 2.也可以用struts2提供的标签进行遍历 备注 // 传统的接受参数方法 // String sfz=t ...

  7. memcached并发处理

    memcached(十八)并发原语CAS与GETS操作 Memcached 并发控制 CAS 协议 memcache控制高并发问题 使用memcached进行并发控制 memcached的最佳实践方案

  8. CSS的clip-path(转)

    基本概念 clip-path从单词"clip path"的直译上来说,表示的就是裁剪路径.既然有裁剪,咱们就来了解这里面的几个简单的概念. 裁剪就是从某样东西剪切一块.比如说,我们 ...

  9. Signalr简单入门,使用注意点

    注意点:1,创建proxy代理时候,继承了hub的类,方法名在js中,同名,但是默认首字母是小写,2,js中代理毁掉方法的名称和继承了hub的类的方法中的Clients.All.的对象名称要一致(名称 ...

  10. 【转】iOS-Core-Animation-Advanced-Techniques(四)

    原文:http://www.cocoachina.com/ios/20150105/10812.html 隐式动画和显式动画 隐式动画 按照我的意思去做,而不是我说的. -- 埃德娜,辛普森 我们在第 ...