【HDU 4898】 The Revenge of the Princess’ Knight (后缀数组+二分+贪心+...)
The Revenge of the Princess’ Knight
Problem DescriptionThere is an old country and the king fell in love with a devil. The devil always asks the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.The devil’s birthday is approaching, of course, she wants some beautiful gift from the king. The king search everywhere in this kingdom, and finds a beautiful ring for her.
For simplicity, we can see this ring as a ring(so it is a cycle!) of lowercase characters with length n.
The king’s cute daughter, WJMZBMR, gets nothing from her father in her birthday. She feels very sad. By the influence of the king and the devil, this kingdom is full of lolicon, some people think the king is unfair to his kawayi daughter, so they form a party called princess’s knight and plan to destroy king’s gift for the devil to make things fair.
The knight of the knight (or the lolicon of the lolicon), a man called z*p, has the chance to destroy the ring now. But due to his limitless of strength, he can only cut this ring into exactly k continuous parts. To please the princess, he want among those part, the maximum one respect to the lexicographical order is minimized. How can he do it?
InputThe first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains two integers n and k, which are the length of the ring and the parts z*p can cut.
The next line is a string represent the ring.n <= 1000,1<=k<=n.
T <= 5.OutputFor each case, output the maximum part in one line.Sample Input120 3bbbaaaaabbabaabbbbaaSample OutputaaabbabaabbbbaabbbAuthorWJMZBMR
二分的答案就是这K个块字典序的上限。假设以i作为起点,由于字典序上限已知,所以我们可以立刻求出i点最远能选到哪个点。
现在问题变成了:已知每一个点最远能跳R的距离,求是否存在一条路径,使得跳K次回到起点。
首先我们假设,每个点的R≠0,意思就是每个点都能向后跳,这样我们只需要用贪心的思想,枚举任意点为起点,然后向后能跳多少跳多少,若跳回来所花的次数T<=K,则为true 【由于每个点都能向后跳,则我们一定能够通过改变几个跳跃,使得T==K 若当前的点数<K,也就是每次只跳1步都没法跳到,当然就是false了】
现在的问题就是,如果有某些点R==0怎么办,也就是它一步也不能向后跳,并且其它位置也不能跳到这个位置。所以我们想到,将这个点删除掉,并且,将所有受到影响的点全部减一,以前可以从 a向后跳3步,但现在 b (a<=b<=a+3)被删掉了,所以a只能挑2步了,这样最多迭代n次 处理之后,所有点的R都是不为0的了。
对于删点那部分操作呢。我是从后往前扫,要是它要跳到一个为0的点,那么它的skip就变成离这个为0的点最接近的不为0的点。
for(int i=q;i<=q+n-1;i++) nr[i]=0;
for(int i=q+n-1;i>=q;i--)
{
if(sk[i]>0&&sk[i]!=q+n)
{
if(sk[sk[i]]==0&&nr[sk[i]]==0) sk[i]=0,h--;
else if(sk[sk[i]]==0) sk[i]=nr[sk[i]];
}
if(sk[i]>0)
{
for(int j=i+1;j<=q+n-1;j++)
{
if(sk[j]>0) break;
nr[j]=i;
}
}
}
所以删点是O(n)的,我二分完之后还每次枚举开始的位置(我自己感觉不枚举会丧失单调性啊。。好像)
然后还有一个二分咯,总时间复杂度是O(n^2 logn)
可以说我还没AC么。。拍了一个上午了。。
.
.
.
.
.
.
好吧现在我A了。。。对拍没用啊!!还是自己Y出的错。。
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 4010
#define INF 0xfffffff char s[Maxn];
int n,c[Maxn],cl,k; void init()
{
scanf("%s",s+);
cl=;
for(int i=;i<=n;i++) c[++cl]=s[i]-'A'+;
for(int i=;i<=n;i++) c[++cl]=s[i]-'A'+;
} int mymin(int x,int y) {return x<y?x:y;} int rk[Maxn],sa[Maxn],Rs[Maxn],y[Maxn],wr[Maxn];
void get_sa(int m)
{
memcpy(rk,c,sizeof(rk));
for(int i=;i<=m;i++) Rs[i]=;
for(int i=;i<=cl;i++) Rs[rk[i]]++;
for(int i=;i<=m;i++) Rs[i]+=Rs[i-];
for(int i=cl;i>=;i--) sa[Rs[rk[i]]--]=i; int p=,ln=;
while(p<cl)
{
int kk=;
for(int i=cl-ln+;i<=cl;i++) y[++kk]=i;
for(int i=;i<=cl;i++) if(sa[i]>ln) y[++kk]=sa[i]-ln;
for(int i=;i<=cl;i++) wr[i]=rk[y[i]]; for(int i=;i<=m;i++) Rs[i]=;
for(int i=;i<=cl;i++) Rs[wr[i]]++;
for(int i=;i<=m;i++) Rs[i]+=Rs[i-];
for(int i=cl;i>=;i--) sa[Rs[wr[i]]--]=y[i]; for(int i=;i<=cl;i++) wr[i]=rk[i];
for(int i=cl+;i<=cl+ln;i++) wr[i]=;
p=,rk[sa[]]=;
for(int i=;i<=cl;i++)
{
if(wr[sa[i]]!=wr[sa[i-]]||wr[sa[i]+ln]!=wr[sa[i-]+ln]) p++;
rk[sa[i]]=p;
}
m=p,ln*=;
}
sa[]=rk[]=;
} int height[Maxn];
void get_he()
{
int kk=;
for(int i=;i<=cl;i++) if(rk[i]!=)
{
int j=sa[rk[i]-];
if(kk) kk--;
while(c[i+kk]==c[j+kk]&&i+kk<=cl&&j+kk<=cl) kk++;
height[rk[i]]=kk;
}
height[]=;
} int lcp[][]; void get_lcp()
{
for(int i=;i<=cl;i++)
{
int minn=INF;
for(int j=i+;j<=cl;j++)
{
minn=mymin(minn,height[j]);
lcp[sa[i]][sa[j]]=lcp[sa[j]][sa[i]]=minn;
}
}
for(int i=;i<=cl;i++) lcp[i][i]=cl-i+;
} int sk[Maxn],nr[Maxn];
bool check(int x,int l)
{
for(int q=;q<=n;q++)
{
int h=n;
for(int i=q;i<=q+n-;i++)
{
if(lcp[i][sa[x]]==&&c[i]>c[sa[x]]) {h--;sk[i]=;continue;} if(lcp[i][sa[x]]>=l) sk[i]=i+l;
else if(c[i+lcp[i][sa[x]]]>c[sa[x]+lcp[i][sa[x]]]) sk[i]=i+lcp[i][sa[x]];
else sk[i]=q+n; if(sk[i]>q+n) sk[i]=q+n;
} for(int i=q;i<=q+n-;i++) nr[i]=;
for(int i=q+n-;i>=q;i--)
{
if(sk[i]>&&sk[i]!=q+n)
{
if(sk[sk[i]]==&&nr[sk[i]]==) sk[i]=,h--;
else if(sk[sk[i]]==) sk[i]=nr[sk[i]];
}
if(sk[i]>)
{
for(int j=i+;j<=q+n-;j++)
{
if(sk[j]>) break;
nr[j]=i;
}
}
} if(h<k||sk[q]==) continue; int now=q;h=;
while(now<q+n)
{
now=sk[now];
h++;
}
if(h<=k) return ;
}
return ;
} int fffind(int x)
{
int l,r;bool ok=;
l=;
r=mymin(n,cl-sa[x]+);
while(l<r)
{
int mid=(l+r)>>;
if(check(x,mid)) r=mid,ok=;
else l=mid+;
}
if(check(x,l)) ok=;
if(!ok) return -;
return l;
} int eg[Maxn]; void ffind()
{
int l,r,h=;
for(int i=;i<=cl;i++) if(sa[i]<=n) eg[++h]=i;
l=;r=h;
while(l<r)
{
int mid=(l+r)>>;
if(fffind(eg[mid])!=-) r=mid;
else l=mid+;
}
int x=fffind(eg[l]);
for(int i=sa[eg[l]];i<=sa[eg[l]]+x-;i++) printf("%c",c[i]-+'A');
printf("\n");
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
init();
get_sa();
get_he();
get_lcp();
ffind();
}
return ;
}
[HDU4898]
【HDU 4898】 The Revenge of the Princess’ Knight (后缀数组+二分+贪心+...)的更多相关文章
- hdu 4898 The Revenge of the Princess’ Knight
传送阵:http://acm.hdu.edu.cn/showproblem.php?pid=4898 题目大意:一个首尾相连的字符串,将其分为k个子串,使得最大的字串最小 将所有子串排序,输出第k小即 ...
- HDU 4898 The Revenge of the Princess’ Knight(后缀数组+二分+暴力)(2014 Multi-University Training Contest 4)
Problem Description There is an old country and the king fell in love with a devil. The devil always ...
- HDU 4898 The Revenge of the Princess’ Knight ( 2014 Multi-University Training Contest 4 )
题意:给定一个环形字符串,让他把它分成k份,使得最大的字典序 最小. 思路:二分答案,首先很明显答案所有可能是 n*n种 排序可以先求出最长公共前缀,这样比较就只需要比较公共前缀的下一位就能比较出两 ...
- HDU 6278 - Just h-index - [莫队算法+树状数组+二分][2018JSCPC江苏省赛C题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6278 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...
- HDU 5008 Boring String Problem(后缀数组+二分)
题目链接 思路 想到了,但是木写对啊....代码 各种bug,写的乱死了.... 输出最靠前的,比较折腾... #include <cstdio> #include <cstring ...
- HDU 5558 后缀数组+二分
题意有一些绕,但其实就是对于不断变化的i,求以j(0=j<i)使得suffix[j]与suffix[i]的最长公共前缀最长,如果有多个j,则取最小的j. 可以在rank数组中二分,在1-rank ...
- hdu 6194 沈阳网络赛--string string string(后缀数组)
题目链接 Problem Description Uncle Mao is a wonderful ACMER. One day he met an easy problem, but Uncle M ...
- HDU 3948 The Number of Palindromes(Manacher+后缀数组)
题意 求一个字符串中本质不同的回文子串的个数. $ 1\leq |string| \leq 100000$ 思路 好像是回文自动机的裸题,但是可以用 \(\text{Manacher}\) (马拉车) ...
- HDU 5884 Sort(2016年青岛网络赛 G 二分+贪心+小优化)
好题 题意:给你n<=100000个数,每个数范围[0,1000],然后给你一个最大的代价T,每次最多合并k个数成为一个数,代价为k个数的总和.问最后合成1个数的总代价不大于T的最小k 题解:我 ...
随机推荐
- Scala应用函数
我们使用“_” 来代替单个的参数,实际上你也可以使用“_”来代替整个参数列表,比如说,你可以使用 print _ 来代替 println (_). someNumbers.foreach(printl ...
- hdu 1563 Find your present!
Find your present! Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- layer.js子窗口关闭并传数据到父窗的方法
昨晚整了很晚,一直找不到方法.去官网api看了好久,又在网上搜了很久 始终找不到答案.今天自己终于找到了方法. 难点:因为 确认和取消按钮都是在父窗 调用js生成的按钮.只能从父窗回调的时候去去数据并 ...
- 程序员带你学习安卓开发系列-Android文件存储
这是程序员带你学习安卓开发系列教程.本文章致力于面向对象程序员可以快速学习开发安卓技术. 上篇文章:.Net程序员快速学习安卓开发-布局和点击事件的写法 主要讲解了布局和点击事件的写法. 上篇文章补充 ...
- jquery知识 内部 外部插入元素
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- java内存分块
运行时数据区域 Java虚拟机在执行Java的过程中会把管理的内存划分为若干个不同的数据区域.这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,而有的区域则依赖线程的启 ...
- Sql触发器脚本
ALTER Trigger [dbo].[test] --新建触发器 On [dbo].[test1] --在test1表中创建触发器 for insert --触发条件 As --事件触发后所要做的 ...
- SqlServer Change Data Capture(CDC)数据变更捕获
最近在使用SqlServer2008r2数据库做系统的时候,在某些重要的.经常涉及到修改的表上,想加上一些恢复机制,一开始想找找看看有没有类似Oracle数据库闪回那样的功能,后来发现CDC的功能可以 ...
- 将Cell中的视图取出传递到根视图
当我们点击Cell中的某个图片时,图片会有一种从Cell中取出,放大,然后再回到原来的Cell中的效果.我的想法是:当Cell中的图片用button 来显示.当我们点击Cell中的这个button的时 ...
- Cogs 1008. 贪婪大陆(树状数组)
贪婪大陆 难度等级 ★★ 时间限制 1000 ms (1 s) 内存限制 128 MB 测试数据 10 简单对比 输入文件:greedisland.in 输出文件:greedisland.out 简单 ...