Python自动化运维之10、模块之json、pickle、XML、PyYAML、configparser、shutil
序列化
Python中用于序列化的两个模块
- json 用于【字符串】和 【python基本数据类型】 间进行转换
- pickle 用于【python特有的类型】 和 【python基本数据类型】间进行转换
Json模块提供了四个功能:dumps、dump、loads、load
pickle模块提供了四个功能:dumps、dump、loads、load
json模块
# json()将字符串形式的列表或字典转换为list或dict类型,json是所有语言相互通信的方式
# 注意外层字符形式一定是''单引号,'{"a":"xiao","b":"xiao"}'列表或字典中的字符串一定要""双引号,否则报错
import json # json.dumps() 将python基本数据类型转化成字符串形式
dic = {'k1':'v1'}
print(dic,type(dic))
result = json.dumps(dic)
print(result,type(result)) # json.loads() 将python字符串形式转化成基本数据类型
s = '{"k1":123}'
dic = json.loads(s)
print(dic,type(dic)) # json.dump() 先序列化,再写入文件
li = [11,22,33]
json.dump(li,open('db','w')) # json.load() 读取文件反序列化
l = json.load(open('db','r'))
print(l,type(l))
pickle模块
pickple只有python才能用,用于复杂类型的序列化,(如果是序列化一个对象,在别的模块中反序列化的时候一定要导入该对象所属的类,否则报错)
import pickle # pickle.dumps() 序列化
li = [11,22,33]
r = pickle.dumps(li)
print(r) # pickle.loads() 反序列化
result = pickle.loads(r)
print(result,type(result)) # pickle.dump() 先序列化,再写入文件
l1 = [11,22,33,55]
pickle.dump(l1,open('db','wb')) # pickle.load() 读取文件反序列化
result1 = pickle.load(open('db','rb'))
print(result1,type(result1))
XML模块
xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过,古时候,在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要是xml,XML文件格式如下:
<data>
<country name="Liechtenstein">
<rank updated="yes">2</rank>
<year>2023</year>
<gdppc>141100</gdppc>
<neighbor direction="E" name="Austria" />
<neighbor direction="W" name="Switzerland" />
</country>
<country name="Singapore">
<rank updated="yes">5</rank>
<year>2026</year>
<gdppc>59900</gdppc>
<neighbor direction="N" name="Malaysia" />
</country>
<country name="Panama">
<rank updated="yes">69</rank>
<year>2026</year>
<gdppc>13600</gdppc>
<neighbor direction="W" name="Costa Rica" />
<neighbor direction="E" name="Colombia" />
</country>
</data>
1、解析XML两种方法
(1)利用ElementTree.XML将字符串解析成xml对象
from xml.etree import ElementTree as ET # 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)
(2)利用ElementTree.parse将文件直接解析成xml对象
from xml.etree import ElementTree as ET # 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot()
2、操作XML
XML格式类型是节点嵌套节点,对于每一个节点均有以下功能,以便对当前节点进行操作:
class Element:
"""An XML element. This class is the reference implementation of the Element interface. An element's length is its number of subelements. That means if you
want to check if an element is truly empty, you should check BOTH
its length AND its text attribute. The element tag, attribute names, and attribute values can be either
bytes or strings. *tag* is the element name. *attrib* is an optional dictionary containing
element attributes. *extra* are additional element attributes given as
keyword arguments. Example form:
<tag attrib>text<child/>...</tag>tail """ 当前节点的标签名
tag = None
"""The element's name.""" 当前节点的属性 attrib = None
"""Dictionary of the element's attributes.""" 当前节点的内容
text = None
"""
Text before first subelement. This is either a string or the value None.
Note that if there is no text, this attribute may be either
None or the empty string, depending on the parser. """ tail = None
"""
Text after this element's end tag, but before the next sibling element's
start tag. This is either a string or the value None. Note that if there
was no text, this attribute may be either None or an empty string,
depending on the parser. """ def __init__(self, tag, attrib={}, **extra):
if not isinstance(attrib, dict):
raise TypeError("attrib must be dict, not %s" % (
attrib.__class__.__name__,))
attrib = attrib.copy()
attrib.update(extra)
self.tag = tag
self.attrib = attrib
self._children = [] def __repr__(self):
return "<%s %r at %#x>" % (self.__class__.__name__, self.tag, id(self)) def makeelement(self, tag, attrib):
创建一个新节点
"""Create a new element with the same type. *tag* is a string containing the element name.
*attrib* is a dictionary containing the element attributes. Do not call this method, use the SubElement factory function instead. """
return self.__class__(tag, attrib) def copy(self):
"""Return copy of current element. This creates a shallow copy. Subelements will be shared with the
original tree. """
elem = self.makeelement(self.tag, self.attrib)
elem.text = self.text
elem.tail = self.tail
elem[:] = self
return elem def __len__(self):
return len(self._children) def __bool__(self):
warnings.warn(
"The behavior of this method will change in future versions. "
"Use specific 'len(elem)' or 'elem is not None' test instead.",
FutureWarning, stacklevel=2
)
return len(self._children) != 0 # emulate old behaviour, for now def __getitem__(self, index):
return self._children[index] def __setitem__(self, index, element):
# if isinstance(index, slice):
# for elt in element:
# assert iselement(elt)
# else:
# assert iselement(element)
self._children[index] = element def __delitem__(self, index):
del self._children[index] def append(self, subelement):
为当前节点追加一个子节点
"""Add *subelement* to the end of this element. The new element will appear in document order after the last existing
subelement (or directly after the text, if it's the first subelement),
but before the end tag for this element. """
self._assert_is_element(subelement)
self._children.append(subelement) def extend(self, elements):
为当前节点扩展 n 个子节点
"""Append subelements from a sequence. *elements* is a sequence with zero or more elements. """
for element in elements:
self._assert_is_element(element)
self._children.extend(elements) def insert(self, index, subelement):
在当前节点的子节点中插入某个节点,即:为当前节点创建子节点,然后插入指定位置
"""Insert *subelement* at position *index*."""
self._assert_is_element(subelement)
self._children.insert(index, subelement) def _assert_is_element(self, e):
# Need to refer to the actual Python implementation, not the
# shadowing C implementation.
if not isinstance(e, _Element_Py):
raise TypeError('expected an Element, not %s' % type(e).__name__) def remove(self, subelement):
在当前节点在子节点中删除某个节点
"""Remove matching subelement. Unlike the find methods, this method compares elements based on
identity, NOT ON tag value or contents. To remove subelements by
other means, the easiest way is to use a list comprehension to
select what elements to keep, and then use slice assignment to update
the parent element. ValueError is raised if a matching element could not be found. """
# assert iselement(element)
self._children.remove(subelement) def getchildren(self):
获取所有的子节点(废弃)
"""(Deprecated) Return all subelements. Elements are returned in document order. """
warnings.warn(
"This method will be removed in future versions. "
"Use 'list(elem)' or iteration over elem instead.",
DeprecationWarning, stacklevel=2
)
return self._children def find(self, path, namespaces=None):
获取第一个寻找到的子节点
"""Find first matching element by tag name or path. *path* is a string having either an element tag or an XPath,
*namespaces* is an optional mapping from namespace prefix to full name. Return the first matching element, or None if no element was found. """
return ElementPath.find(self, path, namespaces) def findtext(self, path, default=None, namespaces=None):
获取第一个寻找到的子节点的内容
"""Find text for first matching element by tag name or path. *path* is a string having either an element tag or an XPath,
*default* is the value to return if the element was not found,
*namespaces* is an optional mapping from namespace prefix to full name. Return text content of first matching element, or default value if
none was found. Note that if an element is found having no text
content, the empty string is returned. """
return ElementPath.findtext(self, path, default, namespaces) def findall(self, path, namespaces=None):
获取所有的子节点
"""Find all matching subelements by tag name or path. *path* is a string having either an element tag or an XPath,
*namespaces* is an optional mapping from namespace prefix to full name. Returns list containing all matching elements in document order. """
return ElementPath.findall(self, path, namespaces) def iterfind(self, path, namespaces=None):
获取所有指定的节点,并创建一个迭代器(可以被for循环)
"""Find all matching subelements by tag name or path. *path* is a string having either an element tag or an XPath,
*namespaces* is an optional mapping from namespace prefix to full name. Return an iterable yielding all matching elements in document order. """
return ElementPath.iterfind(self, path, namespaces) def clear(self):
清空节点
"""Reset element. This function removes all subelements, clears all attributes, and sets
the text and tail attributes to None. """
self.attrib.clear()
self._children = []
self.text = self.tail = None def get(self, key, default=None):
获取当前节点的属性值
"""Get element attribute. Equivalent to attrib.get, but some implementations may handle this a
bit more efficiently. *key* is what attribute to look for, and
*default* is what to return if the attribute was not found. Returns a string containing the attribute value, or the default if
attribute was not found. """
return self.attrib.get(key, default) def set(self, key, value):
为当前节点设置属性值
"""Set element attribute. Equivalent to attrib[key] = value, but some implementations may handle
this a bit more efficiently. *key* is what attribute to set, and
*value* is the attribute value to set it to. """
self.attrib[key] = value def keys(self):
获取当前节点的所有属性的 key """Get list of attribute names. Names are returned in an arbitrary order, just like an ordinary
Python dict. Equivalent to attrib.keys() """
return self.attrib.keys() def items(self):
获取当前节点的所有属性值,每个属性都是一个键值对
"""Get element attributes as a sequence. The attributes are returned in arbitrary order. Equivalent to
attrib.items(). Return a list of (name, value) tuples. """
return self.attrib.items() def iter(self, tag=None):
在当前节点的子孙中根据节点名称寻找所有指定的节点,并返回一个迭代器(可以被for循环)。
"""Create tree iterator. The iterator loops over the element and all subelements in document
order, returning all elements with a matching tag. If the tree structure is modified during iteration, new or removed
elements may or may not be included. To get a stable set, use the
list() function on the iterator, and loop over the resulting list. *tag* is what tags to look for (default is to return all elements) Return an iterator containing all the matching elements. """
if tag == "*":
tag = None
if tag is None or self.tag == tag:
yield self
for e in self._children:
yield from e.iter(tag) # compatibility
def getiterator(self, tag=None):
# Change for a DeprecationWarning in 1.4
warnings.warn(
"This method will be removed in future versions. "
"Use 'elem.iter()' or 'list(elem.iter())' instead.",
PendingDeprecationWarning, stacklevel=2
)
return list(self.iter(tag)) def itertext(self):
在当前节点的子孙中根据节点名称寻找所有指定的节点的内容,并返回一个迭代器(可以被for循环)。
"""Create text iterator. The iterator loops over the element and all subelements in document
order, returning all inner text. """
tag = self.tag
if not isinstance(tag, str) and tag is not None:
return
if self.text:
yield self.text
for e in self:
yield from e.itertext()
if e.tail:
yield e.tail
由于 每个节点 都具有以上的方法,并且在上一步骤中解析时均得到了root(xml文件的根节点),so 可以利用以上方法进行操作xml文件。
(1)遍历XML文档的所有内容
from xml.etree import ElementTree as ET ############ 解析方式一 ############
"""
# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)
"""
############ 解析方式二 ############ # 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot() ### 操作 # 顶层标签
print(root.tag) # 遍历XML文档的第二层
for child in root:
# 第二层节点的标签名称和标签属性
print(child.tag, child.attrib)
# 遍历XML文档的第三层
for i in child:
# 第二层节点的标签名称和内容
print(i.tag,i.text)
(2)遍历XML中指定的节点
from xml.etree import ElementTree as ET ############ 解析方式一 ############
"""
# 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml)
"""
############ 解析方式二 ############ # 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot() ### 操作 # 顶层标签
print(root.tag) # 遍历XML中所有的year节点
for node in root.iter('year'):
# 节点的标签名称和内容
print(node.tag, node.text)
(3)修改节点内容
由于修改的节点时,均是在内存中进行,其不会影响文件中的内容。所以,如果想要修改,则需要重新将内存中的内容写到文件。
解析字符串方式,修改,保存
from xml.etree import ElementTree as ET ############ 解析方式一 ############ # 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml) ############ 操作 ############ # 顶层标签
print(root.tag) # 循环所有的year节点
for node in root.iter('year'):
# 将year节点中的内容自增一
new_year = int(node.text) + 1
node.text = str(new_year) # 设置属性
node.set('name', 'alex')
node.set('age', '18')
# 删除属性
del node.attrib['name'] ############ 保存文件 ############
tree = ET.ElementTree(root)
tree.write("newnew.xml", encoding='utf-8')
解析文件方式,修改,保存
from xml.etree import ElementTree as ET ############ 解析方式二 ############ # 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot() ############ 操作 ############ # 顶层标签
print(root.tag) # 循环所有的year节点
for node in root.iter('year'):
# 将year节点中的内容自增一
new_year = int(node.text) + 1
node.text = str(new_year) # 设置属性
node.set('name', 'alex')
node.set('age', '18')
# 删除属性
del node.attrib['name'] ############ 保存文件 ############
tree.write("newnew.xml", encoding='utf-8') 解析文件方式,修改,保存
(4)删除节点
解析字符串方式打开,删除,保存
from xml.etree import ElementTree as ET ############ 解析字符串方式打开 ############ # 打开文件,读取XML内容
str_xml = open('xo.xml', 'r').read() # 将字符串解析成xml特殊对象,root代指xml文件的根节点
root = ET.XML(str_xml) ############ 操作 ############ # 顶层标签
print(root.tag) # 遍历data下的所有country节点
for country in root.findall('country'):
# 获取每一个country节点下rank节点的内容
rank = int(country.find('rank').text) if rank > 50:
# 删除指定country节点
root.remove(country) ############ 保存文件 ############
tree = ET.ElementTree(root)
tree.write("newnew.xml", encoding='utf-8')
解析文件方式打开,删除,保存
from xml.etree import ElementTree as ET ############ 解析文件方式 ############ # 直接解析xml文件
tree = ET.parse("xo.xml") # 获取xml文件的根节点
root = tree.getroot() ############ 操作 ############ # 顶层标签
print(root.tag) # 遍历data下的所有country节点
for country in root.findall('country'):
# 获取每一个country节点下rank节点的内容
rank = int(country.find('rank').text) if rank > 50:
# 删除指定country节点
root.remove(country) ############ 保存文件 ############
tree.write("newnew.xml", encoding='utf-8')
3、创建XML文档
创建方式(一)
from xml.etree import ElementTree as ET # 创建根节点
root = ET.Element("famliy") # 创建节点大儿子
son1 = ET.Element('son', {'name': '儿1'})
# 创建小儿子
son2 = ET.Element('son', {"name": '儿2'}) # 在大儿子中创建两个孙子
grandson1 = ET.Element('grandson', {'name': '儿11'})
grandson2 = ET.Element('grandson', {'name': '儿12'})
son1.append(grandson1)
son1.append(grandson2) # 把儿子添加到根节点中
root.append(son1)
root.append(son1) tree = ET.ElementTree(root)
tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)
创建方式(一)
from xml.etree import ElementTree as ET # 创建根节点
root = ET.Element("famliy") # 创建大儿子
# son1 = ET.Element('son', {'name': '儿1'})
son1 = root.makeelement('son', {'name': '儿1'})
# 创建小儿子
# son2 = ET.Element('son', {"name": '儿2'})
son2 = root.makeelement('son', {"name": '儿2'}) # 在大儿子中创建两个孙子
# grandson1 = ET.Element('grandson', {'name': '儿11'})
grandson1 = son1.makeelement('grandson', {'name': '儿11'})
# grandson2 = ET.Element('grandson', {'name': '儿12'})
grandson2 = son1.makeelement('grandson', {'name': '儿12'}) son1.append(grandson1)
son1.append(grandson2) # 把儿子添加到根节点中
root.append(son1)
root.append(son1) tree = ET.ElementTree(root)
tree.write('oooo.xml',encoding='utf-8', short_empty_elements=False)
创建方式(一)
from xml.etree import ElementTree as ET # 创建根节点
root = ET.Element("famliy") # 创建节点大儿子
son1 = ET.SubElement(root, "son", attrib={'name': '儿1'})
# 创建小儿子
son2 = ET.SubElement(root, "son", attrib={"name": "儿2"}) # 在大儿子中创建一个孙子
grandson1 = ET.SubElement(son1, "age", attrib={'name': '儿11'})
grandson1.text = '孙子' et = ET.ElementTree(root) #生成文档对象
et.write("test.xml", encoding="utf-8", xml_declaration=True, short_empty_elements=False)
由于原生保存的XML时默认无缩进,如果想要设置缩进的话, 需要修改保存方式:
from xml.etree import ElementTree as ET
from xml.dom import minidom def prettify(elem):
"""将节点转换成字符串,并添加缩进。
"""
rough_string = ET.tostring(elem, 'utf-8')
reparsed = minidom.parseString(rough_string)
return reparsed.toprettyxml(indent="\t") # 创建根节点
root = ET.Element("famliy") # 创建大儿子
# son1 = ET.Element('son', {'name': '儿1'})
son1 = root.makeelement('son', {'name': '儿1'})
# 创建小儿子
# son2 = ET.Element('son', {"name": '儿2'})
son2 = root.makeelement('son', {"name": '儿2'}) # 在大儿子中创建两个孙子
# grandson1 = ET.Element('grandson', {'name': '儿11'})
grandson1 = son1.makeelement('grandson', {'name': '儿11'})
# grandson2 = ET.Element('grandson', {'name': '儿12'})
grandson2 = son1.makeelement('grandson', {'name': '儿12'}) son1.append(grandson1)
son1.append(grandson2) # 把儿子添加到根节点中
root.append(son1)
root.append(son1) raw_str = prettify(root) f = open("xxxoo.xml",'w',encoding='utf-8')
f.write(raw_str)
f.close()
4、命名空间
详细介绍,猛击这里
from xml.etree import ElementTree as ET ET.register_namespace('com',"http://www.company.com") #some name # build a tree structure
root = ET.Element("{http://www.company.com}STUFF")
body = ET.SubElement(root, "{http://www.company.com}MORE_STUFF", attrib={"{http://www.company.com}hhh": "123"})
body.text = "STUFF EVERYWHERE!" # wrap it in an ElementTree instance, and save as XML
tree = ET.ElementTree(root) tree.write("page.xml",
xml_declaration=True,
encoding='utf-8',
method="xml")
PyYAML模块
Python也可以很容易的处理ymal文档格式,只不过需要安装一个模块,参考文档:http://pyyaml.org/wiki/PyYAMLDocumentation
configparser模块
configparser用于处理特定格式的文件如有键值对[]等,其本质上是利用open来操作文件。
# 注释1
; 注释2 [section1] # 节点
k1 = v1 # 值
k2:v2 # 值 [section2] # 节点
k1 = v1 # 值
1、获取所有节点
import configparser config = configparser.ConfigParser()
config.read('xxxooo', encoding='utf-8')
ret = config.sections()
print(ret)
2、获取指定节点下所有的键值对
import configparser config = configparser.ConfigParser()
config.read('xxxooo', encoding='utf-8')
ret = config.items('section1')
print(ret)
3、获取指定节点下所有的建
import configparser config = configparser.ConfigParser()
config.read('xxxooo', encoding='utf-8')
ret = config.options('section1')
print(ret)
4、获取指定节点下指定key的值
import configparser config = configparser.ConfigParser()
config.read('xxxooo', encoding='utf-8') v = config.get('section1', 'k1')
# v = config.getint('section1', 'k1')
# v = config.getfloat('section1', 'k1')
# v = config.getboolean('section1', 'k1') print(v)
5、检查、删除、添加节点
import configparser config = configparser.ConfigParser()
config.read('xxxooo', encoding='utf-8') # 检查
has_sec = config.has_section('section1')
print(has_sec) # 添加节点
config.add_section("SEC_1")
config.write(open('xxxooo', 'w')) # 删除节点
config.remove_section("SEC_1")
config.write(open('xxxooo', 'w'))
6、检查、删除、设置指定组内的键值对
import configparser config = configparser.ConfigParser()
config.read('xxxooo', encoding='utf-8') # 检查
has_opt = config.has_option('section1', 'k1')
print(has_opt) # 删除
config.remove_option('section1', 'k1')
config.write(open('xxxooo', 'w')) # 设置
config.set('section1', 'k10', "123")
config.write(open('xxxooo', 'w'))
shutil模块
高级的 文件、文件夹、压缩包 处理模块,注意当前用户要是对其他文件或目录没有权限会报错
shutil.copyfileobj(fsrc, fdst[, length]) 将文件内容拷贝到另一个文件中
import shutil shutil.copyfileobj(open('/etc/passwd','r'), open('password', 'w'))
shutil.copyfile(src, dst) 拷贝文件
import shutil shutil.copyfile('/etc/passwd','password1')
shutil.ignore_patterns(*patterns) 忽略某些文件
shutil.copytree(src, dst, symlinks=False, ignore=None) 递归的去拷贝文件夹
import shutil shutil.copytree('/etc','etc', ignore=shutil.ignore_patterns('*.conf', 'tmp*'))
shutil.rmtree(path[, ignore_errors[, onerror]]) 递归删除文件夹
import shutil shutil.rmtree('etc')
shutil.move(src, dst) 它类似mv命令,其实就是重命名。
import shutil shutil.move('folder1', 'folder3')
shutil.make_archive(base_name, format,...) 创建压缩包并返回文件路径,例如:zip、tar
创建压缩包并返回文件路径,例如:zip、tar
- base_name: 压缩包的文件名,也可以是压缩包的路径。只是文件名时,则保存至当前目录,否则保存至指定路径,
如:www =>保存至当前路径
如:/Users/wupeiqi/www =>保存至/Users/wupeiqi/ - format: 压缩包种类,“zip”, “tar”, “bztar”,“gztar”
- root_dir: 要压缩的文件夹路径(默认当前目录)
- owner: 用户,默认当前用户
- group: 组,默认当前组
- logger: 用于记录日志,通常是logging.Logger对象
import shutil #将 /home/tomcat/ 下的文件打包放置当前程序目录
ret = shutil.make_archive("test", 'gztar', root_dir='/home/tomcat/') #将 /home/tomcat/ 下的文件打包放置 /home/tomcat/目录
ret = shutil.make_archive("/home/tomcat/www", 'gztar', root_dir='/home/tomcat/')
shutil 对压缩包的处理是调用 ZipFile 和 TarFile 两个模块来进行的,详细:
import zipfile # 压缩
z = zipfile.ZipFile('laxi.zip', 'w')
z.write('a.log')
z.write('data.data')
z.close() # 解压
z = zipfile.ZipFile('laxi.zip', 'r')
z.extractall()
z.close()
TarFile
import tarfile # 压缩
tar = tarfile.open('your.tar','w')
tar.add('/Users/wupeiqi/PycharmProjects/bbs2.log', arcname='bbs2.log')
tar.add('/Users/wupeiqi/PycharmProjects/cmdb.log', arcname='cmdb.log')
tar.close() # 解压
tar = tarfile.open('your.tar','r')
tar.extractall() # 可设置解压地址
tar.close()
Python自动化运维之10、模块之json、pickle、XML、PyYAML、configparser、shutil的更多相关文章
- Python自动化运维——DNS处理模块
Infi-chu: http://www.cnblogs.com/Infi-chu/ 模块:dnspython 功能: 支持所有的记录类型 可以用于查询.传输并动态更新ZONE信息 支持TSIG(事务 ...
- Python自动化运维——系统进程管理模块
Infi-chu: http://www.cnblogs.com/Infi-chu/ 模块:psutil psutil是一个跨平台库,可以很轻松的为我们实现获取系统运行的进程和资源利用率等信息. 功能 ...
- 【目录】Python自动化运维
目录:Python自动化运维笔记 Python自动化运维 - day2 - 数据类型 Python自动化运维 - day3 - 函数part1 Python自动化运维 - day4 - 函数Part2 ...
- Python自动化运维:技术与最佳实践 PDF高清完整版|网盘下载内附地址提取码|
内容简介: <Python自动化运维:技术与最佳实践>一书在中国运维领域将有“划时代”的重要意义:一方面,这是国内第一本从纵.深和实践角度探讨Python在运维领域应用的著作:一方面本书的 ...
- Python自动化运维 技术与最佳实践PDF高清完整版免费下载|百度云盘|Python基础教程免费电子书
点击获取提取码:7bl4 一.内容简介 <python自动化运维:技术与最佳实践>一书在中国运维领域将有"划时代"的重要意义:一方面,这是国内第一本从纵.深和实践角度探 ...
- python自动化运维之CMDB篇-大米哥
python自动化运维之CMDB篇 视频地址:复制这段内容后打开百度网盘手机App,操作更方便哦 链接:https://pan.baidu.com/s/1Oj_sglTi2P1CMjfMkYKwCQ ...
- Day1 老男孩python自动化运维课程学习笔记
2017年1月7日老男孩python自动化运维课程正式开课 第一天学习内容: 上午 1.python语言的基本介绍 python语言是一门解释型的语言,与1989年的圣诞节期间,吉多·范罗苏姆为了在阿 ...
- python自动化运维学习第一天--day1
学习python自动化运维第一天自己总结的作业 所使用到知识:json模块,用于数据转化sys.exit 用于中断循环退出程序字符串格式化.format字典.文件打开读写with open(file, ...
- python自动化运维篇
1-1 Python运维-课程简介及基础 1-2 Python运维-自动化运维脚本编写 2-1 Python自动化运维-Ansible教程-Ansible介绍 2-2 Python自动化运维-Ansi ...
随机推荐
- JAVA首选五款开源Web开发框架
Spring Spring是一个开源的Java/Java EE全功能栈应用程序框架,在JavaEE社区中非常受欢迎,以Apache许可证形式发布,也有.NET平台上的移植版本. Struts2 Str ...
- 服务器端javascript——Rhino和Node
Node: Node是v8 javasript解析器的一个特别版本,侧重于异步I/O,网络和HTTP 入门见:http://www.cnblogs.com/wishyouhappy/p/3647037 ...
- Windows 不能在 本地计算机 启动 SQL Server 服务 错误代码126
本文转自:http://www.cnblogs.com/yuerdongni/archive/2012/08/18/2645140.html 在使用SQL2005(或2008)是可能会遇到错误提示: ...
- UVA10557- XYZZY(spfa+设置次数上限)
题意:有N个房间,刚开始你位于1号房间,有100的能量值,你要到达N号房间,每两个房间之间有单向门相连接,你到达某个房间可以加上该房间的能量值, 如果你在未到达N号房间之前能量值耗尽,则死亡,否则胜利 ...
- python_Opencv_读取视频
目标 • 学会读取视频文件,显示视频,保存视频文件 • 学会从摄像头获取并显示视频 • 你将会学习到这些函数:cv2.VideoCapture(),cv2.VideoWrite()用摄像头捕获视频 使 ...
- Py3快速下载地址
pip3.exe install 包名称 -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com
- 你需要知道的九大排序算法【Python实现】之插入排序
三.插入排序 基本思想:插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2).是稳定的排序方法.插入算 ...
- Hibernate 入门的第一个程序
一. Hibernate介绍 Hibernate是基于对象/关系映射(ORM,Object/Relational Mapping)的一个解决方案.ORM方案的思想是将对象模型表示的对象映射到关 ...
- juce: 跨平台的C++用户界面库
如果你用过QT和MFC,那你必然知道QT是基于C++的跨平台库,而MFC是微软针对widows平台推出来基础类库.且不论MFC的设计如何,从我个人和身边朋友的经历来看,MFC是一些非常难以理解的类的组 ...
- [RxJS] Creation operators: interval and timer
It is quite common to need an Observable that ticks periodically, for instance every second or every ...