ural 1091 题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1091

题意是从1到n的集合里选出k个数,使得这些数满足gcd大于1

解法:

因子有2的数: 2,4,6,8,10,12,14.。。

因子有3的数:3,6,9,12,15,18,21.。。

因子有5的数:5,10,15,18,21,24.。。

可以看出这里求出的集合时会有重复的,得去从。可惜没有学过容斥原理。不过解决这题还是没问题的。

50以内的素因子有:2, 3, 5, 7, 11, 13, 17, 19, 23只有这些素因子才可能产生集合元素大于2的集合

排除重复度为2的集合: 6{2,3(因子2和因子3造成集合重复)}, 10{2,5},14{2,7}, 22{2, 11}, 15{3,5},21{3,7}

代码为:

IN = lambda : map(int, raw_input().split() )
prime = [2, 3, 5, 7, 11, 13, 17, 19, 23]
x = [6, 10, 14, 22, 15, 21] k, s = IN()
c =[ [0]*(s+1) for i in xrange(s+1) ]
for i in xrange(s+1):
c[i][1] = i; c[i][0] = 1; c[i][i]=1
for i in xrange(1,s+1):
for j in xrange(1, i):
c[i][j] = c[i-1][j]+c[i-1][j-1] sum = 0
for v in prime:
if s/v<k: break
sum += c[s/v][k]
for v in x:
if s/v<k: break
sum -= c[s/v][k] print sum if sum<10000 else 10000

cf 295B http://codeforces.com/problemset/problem/295/B

题意是:按照一定顺序删除点并删除与点相连的线,求删除该点前的点集合里两两点的最短距离。

这题我以前看到过类似的,很自然就想到了从后往前处理,每次把这个点加进去循环更新距离,这个类似floyed

python代码:肯能是python效率问题吧,这个代码过不了。TLE,但是换成c++就过了

from sys import stdin,stdout
IN = lambda: [ int(x) for x in stdin.readline().split() ]
n = int( stdin.readline().strip() )
edge = []
for i in xrange(n):
edge.append( IN() )
x = IN()
ans = [0]*n for k in xrange(n-1, -1, -1):
for i in xrange(n):
for j in xrange(n):
edge[i][j] = min( edge[i][j], edge[i][x[k] -1] + edge[x[k]-1 ][j] )
for i in xrange(k, n):
for j in xrange(k, n):
ans[k] += edge[x[i]-1 ][x[j]-1 ]
print ' '.join( map(str,ans ) )

c++ code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define maxn 505
int n, edge[maxn][maxn];
int x[maxn];
long long ans[maxn]; int main(int argc, char**argv){
cin >> n;
for ( int i=; i<n; ++i )
for ( int j=; j<n; ++j )
cin >> edge[i][j];
for ( int i=; i<n; ++i ) cin >>x[i];
for ( int k=n-; k>=; --k ){
for ( int i=; i<n; ++i )
for ( int j=; j<n; ++j )
edge[i][j] = min( edge[i][j], edge[i][x[k]- ]+ edge[x[k]-][j] );
ans[k] = ;
for ( int i=k; i<n; ++i )
for ( int j=i+; j<n; ++j )
ans[k] += edge[x[i]- ][x[j]- ]+edge[x[j]- ][x[i]- ];
}
for ( int i=; i<n; ++i )
printf("%I64d ", ans[i]);
}

ural 1091. Tmutarakan Exams 和 codeforces 295 B. Greg and Graph的更多相关文章

  1. ural 1091. Tmutarakan Exams(容斥原理)

    1091. Tmutarakan Exams Time limit: 1.0 secondMemory limit: 64 MB University of New Tmutarakan trains ...

  2. Ural 1091 Tmutarakan Exams

    Tmutarakan Exams Time Limit: 1000ms Memory Limit: 16384KB This problem will be judged on Ural. Origi ...

  3. Codeforces 295 B. Greg and Graph

    http://codeforces.com/problemset/problem/295/B 题意: 给定一个有边权的有向图.再给定一个1~n的排列. 按排列中的顺序依次删除点,问每次删除后,所有点对 ...

  4. ural 1091. Tmutarakan Exams(容斥)

    http://acm.timus.ru/problem.aspx? space=1&num=1091 从1~s中选出k个数,使得k个数的最大公约数大于1,问这种取法有多少种. (2<=k ...

  5. URAL - 1091 Tmutarakan Exams (简单容斥原理)

    题意:K个不同数组成的集合,每个数都不超过S且它们的gcd>1.求这样的数的个数 分析:从2开始枚举gcd,但这样会发生重复.譬如,枚举gcd=2的集合个数和gcd=3的集合个数,枚举6的时候就 ...

  6. 1091. Tmutarakan Exams

    1091. Tmutarakan Exams Time limit: 1.0 secondMemory limit: 64 MB University of New Tmutarakan trains ...

  7. 容斥原理--计算并集的元素个数 URAL 1091

    在计数时,必须注意没有重复,没有遗漏.为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计 ...

  8. F - Tmutarakan Exams URAL - 1091 -莫比乌斯函数-容斥 or DP计数

    F - Tmutarakan Exams 题意 : 从 < = S 的 数 中 选 出 K 个 不 同 的 数 并 且 gcd > 1 .求方案数. 思路 :记 录 一 下 每 个 数 的 ...

  9. 2014 Super Training #3 H Tmutarakan Exams --容斥原理

    原题: URAL 1091  http://acm.timus.ru/problem.aspx?space=1&num=1091 题意:要求找出K个不同的数字使他们有一个大于1的公约数,且所有 ...

随机推荐

  1. Vijos P1003 等价表达式 随机数+单调栈

    题目链接:https://vijos.org/p/1003 题意: 1. 表达式只可能包含一个变量‘a’. 2. 表达式中出现的数都是正整数,而且都小于10000. 3. 表达式中可以包括四种运算‘+ ...

  2. Oracle表添加主键、外键

    1.创建表的同时创建主键约束 (1)无命名 create table student ( studentid int primary key not null, studentname varchar ...

  3. c++ 内存泄露的检查

    对于c++的内存泄露检测,除了我们自己手动检查以外,还可以使用c++中的函数来帮助我们检测, 如下代码: #include "stdafx.h" #include <stri ...

  4. Matlab使用心得

    1..*和*的区别 .*只能用于两个同型矩阵相乘,且是相对应的元素做乘法运算,其运算规则和我们线性代数里的乘法规则是不一样的:而*用于两个矩阵相乘,如mxn,nxk两个矩阵相乘,它的运算规则和线性代数 ...

  5. WPS目录制作方法

    学校安排我进行电子技术校本教材的后期制作,汇总完全部文字后,需要编辑一个全书目录,进过一番摸索,使用WPS2009圆满完成了此次任务,愿与诸君共享. 1.显示大纲工具栏 打开“视图”——“工具栏”—— ...

  6. 如何使用 Zend Expressive 建立 NASA 图片库?

    在本文中,我们将借助 NASA 天文图库 API,使用 Zend Expressive 建立图片库.最后的结果将显示在 AstroSplash 网站,该网站是为了文本特意搭建的.本文系 OneAPM ...

  7. Vases and Flowers

    hdu4614:http://acm.hdu.edu.cn/showproblem.php?pid=4614 题意:给你n个花瓶,然后有两种操作:1从a开始选择b个花瓶,放进花,输出左端点,右端点 2 ...

  8. Altium Designer学习: 允许闭合回路

    使用AltiumDesigner画PCB时,顶层和底层都有电源线走 但是通过过孔链接的,主要是因为我这里可使用了几个相同的电源接口,把这些上下层的电源接口连在一起就很容易画出闭合回路,这自身没有太大的 ...

  9. web storm使用和配置

    官网:http://www.jetbrains.com/webstorm/ webStorm,File=>setting=>JavaScript-Libraries How WebStor ...

  10. bzoj1797

    其实我觉得这种题目风格很像今天省选第三轮D1T1 都是在一个算法模型上去探索规律: 首先我们要做一遍最大流毫无疑问 第一问看起来很好想,只要是满流边就可以了? 错,反例不难找到 如:1--->2 ...