package com.data.ml.classify;

import java.io.File;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.regex.Matcher;
import java.util.regex.Pattern; import com.data.util.IoUtil; public class NativeBayes {
/**
* 默认频率
*/
private double defaultFreq = 0.1; /**
* 训练数据的比例
*/
private Double trainingPercent = 0.8; private Map<String, List<String>> files_all = new HashMap<String, List<String>>(); private Map<String, List<String>> files_train = new HashMap<String, List<String>>(); private Map<String, List<String>> files_test = new HashMap<String, List<String>>(); public NativeBayes() { } /**
* 每个分类的频率
*/
private Map<String, Integer> classFreq = new HashMap<String, Integer>(); private Map<String, Double> ClassProb = new HashMap<String, Double>(); /**
* 特征总数
*/
private Set<String> WordDict = new HashSet<String>(); private Map<String, Map<String, Integer>> classFeaFreq = new HashMap<String, Map<String, Integer>>(); private Map<String, Map<String, Double>> ClassFeaProb = new HashMap<String, Map<String, Double>>(); private Map<String, Double> ClassDefaultProb = new HashMap<String, Double>(); /**
* 计算准确率
* @param reallist 真实类别
* @param pridlist 预测类别
*/
public void Evaluate(List<String> reallist, List<String> pridlist){
double correctNum = 0.0;
for (int i = 0; i < reallist.size(); i++) {
if(reallist.get(i) == pridlist.get(i)){
correctNum += 1;
}
}
double accuracy = correctNum / reallist.size();
System.out.println("准确率为:" + accuracy);
} /**
* 计算精确率和召回率
* @param reallist
* @param pridlist
* @param classname
*/
public void CalPreRec(List<String> reallist, List<String> pridlist, String classname){
double correctNum = 0.0;
double allNum = 0.0;//测试数据中,某个分类的文章总数
double preNum = 0.0;//测试数据中,预测为该分类的文章总数 for (int i = 0; i < reallist.size(); i++) {
if(reallist.get(i) == classname){
allNum += 1;
if(reallist.get(i) == pridlist.get(i)){
correctNum += 1;
}
}
if(pridlist.get(i) == classname){
preNum += 1;
}
}
System.out.println(classname + " 精确率(跟预测分类比较):" + correctNum / preNum + " 召回率(跟真实分类比较):" + correctNum / allNum);
} /**
* 用模型进行预测
*/
public void PredictTestData() {
List<String> reallist=new ArrayList<String>();
List<String> pridlist=new ArrayList<String>(); for (Entry<String, List<String>> entry : files_test.entrySet()) {
String realclassname = entry.getKey();
List<String> files = entry.getValue(); for (String file : files) {
reallist.add(realclassname); List<String> classnamelist=new ArrayList<String>();
List<Double> scorelist=new ArrayList<Double>();
for (Entry<String, Double> entry_1 : ClassProb.entrySet()) {
String classname = entry_1.getKey();
//先验概率
Double score = Math.log(entry_1.getValue()); String[] words = IoUtil.readFromFile(new File(file)).split(" ");
for (String word : words) {
if(!WordDict.contains(word)){
continue;
} if(ClassFeaProb.get(classname).containsKey(word)){
score += Math.log(ClassFeaProb.get(classname).get(word));
}else{
score += Math.log(ClassDefaultProb.get(classname));
}
} classnamelist.add(classname);
scorelist.add(score);
} Double maxProb = Collections.max(scorelist);
int idx = scorelist.indexOf(maxProb);
pridlist.add(classnamelist.get(idx));
}
} Evaluate(reallist, pridlist); for (String cname : files_test.keySet()) {
CalPreRec(reallist, pridlist, cname);
} } /**
* 模型训练
*/
public void createModel() {
double sum = 0.0;
for (Entry<String, Integer> entry : classFreq.entrySet()) {
sum+=entry.getValue();
}
for (Entry<String, Integer> entry : classFreq.entrySet()) {
ClassProb.put(entry.getKey(), entry.getValue()/sum);
} for (Entry<String, Map<String, Integer>> entry : classFeaFreq.entrySet()) {
sum = 0.0;
String classname = entry.getKey();
for (Entry<String, Integer> entry_1 : entry.getValue().entrySet()){
sum += entry_1.getValue();
}
double newsum = sum + WordDict.size()*defaultFreq; Map<String, Double> feaProb = new HashMap<String, Double>();
ClassFeaProb.put(classname, feaProb); for (Entry<String, Integer> entry_1 : entry.getValue().entrySet()){
String word = entry_1.getKey();
feaProb.put(word, (entry_1.getValue() +defaultFreq) /newsum);
}
ClassDefaultProb.put(classname, defaultFreq/newsum);
}
} /**
* 加载训练数据
*/
public void loadTrainData(){
for (Entry<String, List<String>> entry : files_train.entrySet()) {
String classname = entry.getKey();
List<String> docs = entry.getValue(); classFreq.put(classname, docs.size()); Map<String, Integer> feaFreq = new HashMap<String, Integer>();
classFeaFreq.put(classname, feaFreq); for (String doc : docs) {
String[] words = IoUtil.readFromFile(new File(doc)).split(" ");
for (String word : words) { WordDict.add(word); if(feaFreq.containsKey(word)){
int num = feaFreq.get(word) + 1;
feaFreq.put(word, num);
}else{
feaFreq.put(word, 1);
}
}
} }
System.out.println(classFreq.size()+" 分类, " + WordDict.size()+" 特征词");
} /**
* 将数据分为训练数据和测试数据
*
* @param dataDir
*/
public void splitData(String dataDir) {
// 用文件名区分类别
Pattern pat = Pattern.compile("\\d+([a-z]+?)\\.");
dataDir = "testdata/allfiles";
File f = new File(dataDir);
File[] files = f.listFiles();
for (File file : files) {
String fname = file.getName();
Matcher m = pat.matcher(fname);
if (m.find()) {
String cname = m.group(1);
if (files_all.containsKey(cname)) {
files_all.get(cname).add(file.toString());
} else {
List<String> tmp = new ArrayList<String>();
tmp.add(file.toString());
files_all.put(cname, tmp);
}
} else {
System.out.println("err: " + file);
}
} System.out.println("统计数据:");
for (Entry<String, List<String>> entry : files_all.entrySet()) {
String cname = entry.getKey();
List<String> value = entry.getValue();
// System.out.println(cname + " : " + value.size()); List<String> train = new ArrayList<String>();
List<String> test = new ArrayList<String>(); for (String str : value) {
if (Math.random() <= trainingPercent) {// 80%用来训练 , 20%测试
train.add(str);
} else {
test.add(str);
}
} files_train.put(cname, train);
files_test.put(cname, test);
} System.out.println("所有文件数:");
printStatistics(files_all);
System.out.println("训练文件数:");
printStatistics(files_train);
System.out.println("测试文件数:");
printStatistics(files_test); } /**
* 打印统计信息
*
* @param m
*/
public void printStatistics(Map<String, List<String>> m) {
for (Entry<String, List<String>> entry : m.entrySet()) {
String cname = entry.getKey();
List<String> value = entry.getValue();
System.out.println(cname + " : " + value.size());
}
System.out.println("--------------------------------");
} public static void main(String[] args) {
NativeBayes bayes = new NativeBayes();
bayes.splitData(null);
bayes.loadTrainData();
bayes.createModel();
bayes.PredictTestData(); } } 所有文件数:
sports : 1018
auto : 1020
business : 1028
--------------------------------
训练文件数:
sports : 791
auto : 812
business : 808
--------------------------------
测试文件数:
sports : 227
auto : 208
business : 220
--------------------------------
3 分类, 39613 特征词
准确率为:0.9801526717557252
sports 精确率(跟预测分类比较):0.9956140350877193 召回率(跟真实分类比较):1.0
auto 精确率(跟预测分类比较):0.9579439252336449 召回率(跟真实分类比较):0.9855769230769231
business 精确率(跟预测分类比较):0.9859154929577465 召回率(跟真实分类比较):0.9545454545454546 统计数据:
所有文件数:
sports : 1018
auto : 1020
business : 1028
--------------------------------
训练文件数:
sports : 827
auto : 833
business : 825
--------------------------------
测试文件数:
sports : 191
auto : 187
business : 203
--------------------------------
3 分类, 39907 特征词
准确率为:0.9759036144578314
sports 精确率(跟预测分类比较):0.9894736842105263 召回率(跟真实分类比较):0.9842931937172775
auto 精确率(跟预测分类比较):0.9836956521739131 召回率(跟真实分类比较):0.9679144385026738
business 精确率(跟预测分类比较):0.9565217391304348 召回率(跟真实分类比较):0.9753694581280788

朴素贝叶斯文本分类java实现的更多相关文章

  1. Mahout朴素贝叶斯文本分类

    Mahout朴素贝叶斯文本分类算法 Mahout贝叶斯分类器按照官方的说法,是按照<Tackling the PoorAssumptions of Naive Bayes Text Classi ...

  2. 朴素贝叶斯文本分类-在《红楼梦》作者鉴别的应用上(python实现)

    朴素贝叶斯算法简单.高效.接下来我们来介绍其如何应用在<红楼梦>作者的鉴别上. 第一步,当然是先得有文本数据,我在网上随便下载了一个txt(当时急着交初稿...).分类肯定是要一个回合一个 ...

  3. 朴素贝叶斯文本分类(python代码实现)

    朴素贝叶斯(naive bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法. 优点:在数据较少的情况下仍然有效,可以处理多分类问题. 缺点:对入输入数据的准备方式较为敏感. 使用数据类型:标称 ...

  4. 朴素贝叶斯文本分类实现 python cherry分类器

    贝叶斯模型在机器学习以及人工智能中都有出现,cherry分类器使用了朴素贝叶斯模型算法,经过简单的优化,使用1000个训练数据就能得到97.5%的准确率.虽然现在主流的框架都带有朴素贝叶斯模型算法,大 ...

  5. 详解使用EM算法的半监督学习方法应用于朴素贝叶斯文本分类

    1.前言 对大量需要分类的文本数据进行标记是一项繁琐.耗时的任务,而真实世界中,如互联网上存在大量的未标注的数据,获取这些是容易和廉价的.在下面的内容中,我们介绍使用半监督学习和EM算法,充分结合大量 ...

  6. 利用朴素贝叶斯算法进行分类-Java代码实现

    http://www.crocro.cn/post/286.html 利用朴素贝叶斯算法进行分类-Java代码实现  鳄鱼  3个月前 (12-14)  分类:机器学习  阅读(44)  评论(0) ...

  7. 朴素贝叶斯算法分析及java 实现

    1. 先引入一个简单的例子 出处:http://www.ruanyifeng.com/blog/2013/12/naive_bayes_classifier.html 一.病人分类的例子 让我从一个例 ...

  8. Naive Bayes(朴素贝叶斯算法)[分类算法]

    Naïve Bayes(朴素贝叶斯)分类算法的实现 (1) 简介: (2)   算法描述: (3) <?php /* *Naive Bayes朴素贝叶斯算法(分类算法的实现) */ /* *把. ...

  9. 芝麻HTTP:记scikit-learn贝叶斯文本分类的坑

    基本步骤: 1.训练素材分类: 我是参考官方的目录结构: 每个目录中放对应的文本,一个txt文件一篇对应的文章:就像下面这样 需要注意的是所有素材比例请保持在相同的比例(根据训练结果酌情调整.不可比例 ...

随机推荐

  1. /lib /usr/lib /usr/local/lib 区别

    简单说,/lib是内核级的,/usr/lib是系统级的,/usr/local/lib是用户级的. /lib/ — 包含许多被 /bin/ 和 /sbin/ 中的程序使用的库文件.目录 /usr/lib ...

  2. CSS实现半透明的方法

    IE8不支持以前{filter:alpha(opacity=50);}的私有属性, 转而支持更规范的私有属性-ms-filter: “progid:DXImageTransform.Microsoft ...

  3. Android入门开发之销毁activity

    使用: 销毁.关闭页面activity 如果打开下个页面的同时销毁了本页面,在下个页面无法返回本页面,每次打开APP应用就会先显示一张APP的介绍图.或者LOGO页面,延时几秒进入应用,进入后无法再返 ...

  4. mysql关键字讲解(join 、order by、group by、having、distinct)

    1.join     1.1 OUTER JOIN:想要包含右侧表中的所有行,以及左侧表中有匹配记录的行.        1.11 Mysql中有左连接(left join):            ...

  5. HTML <input> 标签的 type 属性

    HTML <input> 标签的 type 属性 HTML <input> 标签 实例 下面的表单拥有两个输入字段以及一个提交按钮: <form action=" ...

  6. android apk 防止反编译技术第一篇-加壳技术

    做android framework方面的工作将近三年的时间了,现在公司让做一下android apk安全方面的研究,于是最近就在网上找大量的资料来学习.现在将最近学习成果做一下整理总结.学习的这些成 ...

  7. Mysql 创建联合索引注意事项

      当一个表有多条索引可走时,  Mysql  根据查询语句的成本来选择走哪条索引, 联合索引的话, 它往往计算的是第一个字段(最左边那个), 这样往往会走错索引. 如: 索引Index_1(Crea ...

  8. 牵扯较多属性和方法的类题目,很简单的题目本来不想发的,如果有同学学到这个题目感觉太长不愿敲代码,copy走我的即可~不过还是建议自己打一打

    /* 3.设计一个"学生"类 1> 属性 * 姓名 * 生日 * 年龄 * 身高(单位是m) * 体重(单位是kg) * 性别 * C语言成绩 * OC成绩 * iOS成绩 ...

  9. 12天学好C语言——记录我的C语言学习之路(Day 1)

    12天学好C语言--记录我的C语言学习之路 Day 1: 刚刚入门C语言,那么肯定要先把什么是C语言和大家讲清楚,那么大家看下面一段程序(program  1.1): /*//program 1.1 ...

  10. InstallShield: Component-Feature Associations

    Quote from: http://helpnet.installshield.com/installshield16helplib/IHelpFeatAssociateComponents.htm ...