snowflake算法(java版)
转自:http://www.cnblogs.com/haoxinyue/p/5208136.html
1. 数据库自增长序列或字段
最常见的方式。利用数据库,全数据库唯一。
优点:
1)简单,代码方便,性能可以接受。
2)数字ID天然排序,对分页或者需要排序的结果很有帮助。
缺点:
1)不同数据库语法和实现不同,数据库迁移的时候或多数据库版本支持的时候需要处理。
2)在单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。有单点故障的风险。
3)在性能达不到要求的情况下,比较难于扩展。
4)如果遇见多个系统需要合并或者涉及到数据迁移会相当痛苦。
5)分表分库的时候会有麻烦。
优化方案:
1)针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1 生成的是 1,4,7,10,Master2生成的是2,5,8,11 Master3生成的是 3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。
2. UUID
常见的方式。可以利用数据库也可以利用程序生成,一般来说全球唯一。
优点:
1)简单,代码方便。
2)生成ID性能非常好,基本不会有性能问题。
3)全球唯一,在遇见数据迁移,系统数据合并,或者数据库变更等情况下,可以从容应对。
缺点:
1)没有排序,无法保证趋势递增。
2)UUID往往是使用字符串存储,查询的效率比较低。
3)存储空间比较大,如果是海量数据库,就需要考虑存储量的问题。
4)传输数据量大
5)不可读。
3. UUID的变种
1)为了解决UUID不可读,可以使用UUID to Int64的方法。及
/// <summary>
/// 根据GUID获取唯一数字序列
/// </summary>
public static long GuidToInt64()
{
byte[] bytes = Guid.NewGuid().ToByteArray();
return BitConverter.ToInt64(bytes, 0);
}
2)为了解决UUID无序的问题,NHibernate在其主键生成方式中提供了Comb算法(combined guid/timestamp)。保留GUID的10个字节,用另6个字节表示GUID生成的时间(DateTime)。
/// <summary>
/// Generate a new <see cref="Guid"/> using the comb algorithm.
/// </summary>
private Guid GenerateComb()
{
byte[] guidArray = Guid.NewGuid().ToByteArray(); DateTime baseDate = new DateTime(1900, 1, 1);
DateTime now = DateTime.Now; // Get the days and milliseconds which will be used to build
//the byte string
TimeSpan days = new TimeSpan(now.Ticks - baseDate.Ticks);
TimeSpan msecs = now.TimeOfDay; // Convert to a byte array
// Note that SQL Server is accurate to 1/300th of a
// millisecond so we divide by 3.333333
byte[] daysArray = BitConverter.GetBytes(days.Days);
byte[] msecsArray = BitConverter.GetBytes((long)
(msecs.TotalMilliseconds / 3.333333)); // Reverse the bytes to match SQL Servers ordering
Array.Reverse(daysArray);
Array.Reverse(msecsArray); // Copy the bytes into the guid
Array.Copy(daysArray, daysArray.Length - 2, guidArray,
guidArray.Length - 6, 2);
Array.Copy(msecsArray, msecsArray.Length - 4, guidArray,
guidArray.Length - 4, 4); return new Guid(guidArray);
}
用上面的算法测试一下,得到如下的结果:作为比较,前面3个是使用COMB算法得出的结果,最后12个字符串是时间序(统一毫秒生成的3个UUID),过段时间如果再次生成,则12个字符串会比图示的要大。后面3个是直接生成的GUID。
Twitter的snowflake算法
snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是0。具体实现的代码可以参看https://github.com/twitter/snowflake。
C#代码如下:

/// <summary>
/// From: https://github.com/twitter/snowflake
/// An object that generates IDs.
/// This is broken into a separate class in case
/// we ever want to support multiple worker threads
/// per process
/// </summary>
public class IdWorker
{
private long workerId;
private long datacenterId;
private long sequence = 0L; private static long twepoch = 1288834974657L; private static long workerIdBits = 5L;
private static long datacenterIdBits = 5L;
private static long maxWorkerId = -1L ^ (-1L << (int)workerIdBits);
private static long maxDatacenterId = -1L ^ (-1L << (int)datacenterIdBits);
private static long sequenceBits = 12L; private long workerIdShift = sequenceBits;
private long datacenterIdShift = sequenceBits + workerIdBits;
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private long sequenceMask = -1L ^ (-1L << (int)sequenceBits); private long lastTimestamp = -1L;
private static object syncRoot = new object(); public IdWorker(long workerId, long datacenterId)
{ // sanity check for workerId
if (workerId > maxWorkerId || workerId < 0)
{
throw new ArgumentException(string.Format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0)
{
throw new ArgumentException(string.Format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
} public long nextId()
{
lock (syncRoot)
{
long timestamp = timeGen(); if (timestamp < lastTimestamp)
{
throw new ApplicationException(string.Format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} if (lastTimestamp == timestamp)
{
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0)
{
timestamp = tilNextMillis(lastTimestamp);
}
}
else
{
sequence = 0L;
} lastTimestamp = timestamp; return ((timestamp - twepoch) << (int)timestampLeftShift) | (datacenterId << (int)datacenterIdShift) | (workerId << (int)workerIdShift) | sequence;
}
} protected long tilNextMillis(long lastTimestamp)
{
long timestamp = timeGen();
while (timestamp <= lastTimestamp)
{
timestamp = timeGen();
}
return timestamp;
} protected long timeGen()
{
return (long)(DateTime.UtcNow - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;
}
}

测试代码如下:

private static void TestIdWorker()
{
HashSet<long> set = new HashSet<long>();
IdWorker idWorker1 = new IdWorker(0, 0);
IdWorker idWorker2 = new IdWorker(1, 0);
Thread t1 = new Thread(() => DoTestIdWoker(idWorker1, set));
Thread t2 = new Thread(() => DoTestIdWoker(idWorker2, set));
t1.IsBackground = true;
t2.IsBackground = true; t1.Start();
t2.Start();
try
{
Thread.Sleep(30000);
t1.Abort();
t2.Abort();
}
catch (Exception e)
{
} Console.WriteLine("done");
} private static void DoTestIdWoker(IdWorker idWorker, HashSet<long> set)
{
while (true)
{
long id = idWorker.nextId();
if (!set.Add(id))
{
Console.WriteLine("duplicate:" + id);
} Thread.Sleep(1);
}
}

snowflake算法可以根据自身项目的需要进行一定的修改。比如估算未来的数据中心个数,每个数据中心的机器数以及统一毫秒可以能的并发数来调整在算法中所需要的bit数。
优点:
1)不依赖于数据库,灵活方便,且性能优于数据库。
2)ID按照时间在单机上是递增的。
缺点:
1)在单机上是递增的,但是由于涉及到分布式环境,每台机器上的时钟不可能完全同步,也许有时候也会出现不是全局递增的情况。
snowflake算法(java版)的更多相关文章
- 【Java】分布式自增ID算法---雪花算法 (snowflake,Java版)
一般情况,实现全局唯一ID,有三种方案,分别是通过中间件方式.UUID.雪花算法. 方案一,通过中间件方式,可以是把数据库或者redis缓存作为媒介,从中间件获取ID.这种呢,优点是可以体现全局的递增 ...
- 排序算法Java版,以及各自的复杂度,以及由堆排序产生的top K问题
常用的排序算法包括: 冒泡排序:每次在无序队列里将相邻两个数依次进行比较,将小数调换到前面, 逐次比较,直至将最大的数移到最后.最将剩下的N-1个数继续比较,将次大数移至倒数第二.依此规律,直至比较结 ...
- 排序算法系列:插入排序算法JAVA版(靠谱、清晰、真实、可用、不罗嗦版)
在网上搜索算法的博客,发现一个比较悲剧的现象非常普遍: 原理讲不清,混乱 啰嗦 图和文对不上 不可用,甚至代码还出错 我总结一个清晰不罗嗦版: 原理: 和选择排序类似的是也分成“已排序”部分,和“未排 ...
- 排序算法系列:选择排序算法JAVA版(靠谱、清晰、真实、可用、不罗嗦版)
在网上搜索算法的博客,发现一个比较悲剧的现象非常普遍: 原理讲不清,混乱 啰嗦 图和文对不上 不可用,甚至代码还出错 我总结一个清晰不罗嗦版: 原理: 从数组头元素索引i开始,寻找后面最小的值(比i位 ...
- 排序算法系列:快速排序算法JAVA版(靠谱、清晰、真实、可用、不罗嗦版)
在网上搜索算法的博客,发现一个比较悲剧的现象非常普遍: 原理讲不清,混乱 啰嗦 图和文对不上 不可用,甚至代码还出错 为了不误人子弟耽误时间,推荐看一些靠谱的资源,如[啊哈!算法]系列: https: ...
- 常用排序算法--java版
package com.whw.sortPractice; import java.util.Arrays; public class Sort { /** * 遍历一个数组 * @param sor ...
- Kruskal算法java版
/** * sample Kruskal.java Description: * kruskal算法的思想是找最小边,且每次找到的边不会和以找出来的边形成环路,利用一个一维数组group存放当前顶点所 ...
- 快速排序算法Java版
网上关于快速排序的算法原理和算法实现都比较多,不过java是实现并不多,而且部分实现很难理解,和思路有点不搭调.所以整理了这篇文章.如果有不妥之处还请建议.首先先复习一些基础. 1.算法概念. ...
- 爬山算法 | Java版HA_TSP
嗯哼,今天记录下采用Java编写的爬山算法(Hill Algorithm)求解TSP问题. 爬山算法与其他智能算法类似,是一种用来求解多峰函数最值的算法,爬山算法的基本思想是新解不劣于当前解则转移,否 ...
随机推荐
- Hbase 0.96 比 hbase 0.94的改变
转载:http://blog.csdn.net/hxpjava1/article/details/20043703 环境: hadoop:hadoop-2.2.0 hbase:hbase-0.96.0 ...
- Linux查看用户和组命令
在Linux系统里,我们会经常用Linux查看用户的命令,在这里我们一些命令进行了总结,总共有7个,并做了详细的解释,以便让大家更深入的理解,接下来让我们一起来看看这些命令和具体应用. 一.Linux ...
- HDU 2986 Ballot evaluation(精度问题)
点我看题目 题意 : 给你n个人名,每个名后边跟着一个数,然后m个式子,判断是否正确. 思路 :算是一个模拟吧,但是要注意浮点数容易丢失精度,所以要好好处理精度,不知道多少人死在精度上,不过我实在是不 ...
- 【转】IO - 同步,异步,阻塞,非阻塞 (亡羊补牢篇)
概念很重要,一定要掌握.实践都是基于它们的哟 ~~~~~~~~~~~~~~~~~ http://blog.csdn.net/historyasamirror/article/details/57783 ...
- DRUID连接池的简单使用
DRUID——为监控而生的DB池 1. DRUID介绍 DRUID是阿里巴巴开源平台上一个数据库连接池实现,它结合了C3P0.DBCP.PROXOOL等DB池的优点,同时加入了日志监控,可以很好的监 ...
- easyui源码翻译1.32--Messager(消息窗口)
前言 使用$.messager.defaults重写默认值对象.下载该插件翻译源码 消息窗口提供了不同的消息框风格,包含alert(警告框), confirm(确认框), prompt(提示框), p ...
- 到底DAO是什么?为什么要有它的存在?
Data Access Object 数据访问接口,就是访问数据库方法的 interface 1. DAO用来封装Data Source的..就比如,Connection conn = DAOFa ...
- 第四章 USB库介绍
4.1 USB库函数简介 Luminary Micro公司提供USB处理器的USB库函数,应用在Stellaris处理器上,为USB设备.USB主机.OTG开发提供USB协议框架和API函数,适用于多 ...
- 自定义NavigationView's item 的高度
http://stackoverflow.com/questions/31204320/how-can-i-change-the-navigationviews-item-text-size 自定义s ...
- Attribute的一个列子
其实在博客中也写过这个东西,也介绍过它的原理,原理很简单,就是在运行的时候通过反射拦截获取一些信息,但是我在写程序的时候几乎没用过,可能是自己接触的还不够多,也许是因为自己接触的功能不算复杂往往几句代 ...