Netty本身在内存分配上支持堆内存和直接内存,我们一般选用直接内存,这也是默认的配置。所以要理解Netty内存的释放我们得先看下直接内存的释放。

Java直接内存释放

我们先来看下直接内存是怎么使用的

ByteBuffer.allocateDirect(capacity)

申请的过程是其实就是创建一个DirectByteBuffer对象的过程,DirectByteBuffer对象只相当于一个holder,包含一个address,这个是直接内存的指针。

  • 调用native方法申请内存
  • 初始化cleaner
public static ByteBuffer allocateDirect(int capacity) {
return new DirectByteBuffer(capacity);
} DirectByteBuffer(int cap) { // package-private
// 省略中间代码...
// 创建一个cleaner,最后会调用Deallocator.run来释放内存
cleaner = Cleaner.create(this, new Deallocator(base, size, cap));
att = null;
}

Cleaner这个类继承自PhantomReference,也就是所谓的虚引用,这种类型引用的特点是:

  • 使用get方法不能获取到对象
  • 只要引用的对象除了PhantomReference之外没有其他引用了,JVM随时可以将PhantomReference引用的对象回收。

JVM在回前会将将要被回收的对象放在一个队列中,由于Cleaner继承自PhantomReference,队列的实现是使用cleaner的

private static final ReferenceQueue<Object> dummyQueue = new ReferenceQueue<>();

这个队列在PhantomReference的父类Reference中使用到了,Reference这个类在初始化的时候会启动一个线程来调用cleaner.clean方法,在Reference的静态代码块中启动线程

// java.lang.ref.Reference
static {
ThreadGroup tg = Thread.currentThread().getThreadGroup();
for (ThreadGroup tgn = tg;
tgn != null;
tg = tgn, tgn = tg.getParent());
Thread handler = new ReferenceHandler(tg, "Reference Handler");
/* If there were a special system-only priority greater than
* MAX_PRIORITY, it would be used here
*/
handler.setPriority(Thread.MAX_PRIORITY);
handler.setDaemon(true);
// 启动ReferenceHandler线程
handler.start();
// 省略中间代码...
}

该线程的主要作用就是调用tryHandlePending

// java.lang.ref.Reference#tryHandlePending
static boolean tryHandlePending(boolean waitForNotify) {
Reference<Object> r;
Cleaner c;
try {
synchronized (lock) {
if (pending != null) {
r = pending;
// 'instanceof' might throw OutOfMemoryError sometimes
// so do this before un-linking 'r' from the 'pending' chain...
c = r instanceof Cleaner ? (Cleaner) r : null;
// unlink 'r' from 'pending' chain
pending = r.discovered;
r.discovered = null;
} else {
// The waiting on the lock may cause an OutOfMemoryError
// because it may try to allocate exception objects.
if (waitForNotify) {
lock.wait();
}
// retry if waited
return waitForNotify;
}
}
} catch (OutOfMemoryError x) {
// Give other threads CPU time so they hopefully drop some live references
// and GC reclaims some space.
// Also prevent CPU intensive spinning in case 'r instanceof Cleaner' above
// persistently throws OOME for some time...
Thread.yield();
// retry
return true;
} catch (InterruptedException x) {
// retry
return true;
} // Fast path for cleaners
if (c != null) {
// 调用clean方法
c.clean();
return true;
} ReferenceQueue<? super Object> q = r.queue;
if (q != ReferenceQueue.NULL) q.enqueue(r);
return true;
}

System.gc不能回收堆外内存,但是会回收已经没有使用了DirectByteBuffer对象,该对象被回收的时候会将cleaner对象放入队列中,在Reference的线程中调用clean方法来回收堆外内存 。cleaner.run执行的是传入参数的thunk.run方法,这里thunk是Deallocator,所以最后执行的Deallocator.run方法

public void run() {
if (address == 0) {
// Paranoia
return;
}
// 释放内存
unsafe.freeMemory(address);
address = 0;
Bits.unreserveMemory(size, capacity);
}

所以最后通过unsafe.freeMemory释放了申请到的内存。

总结一下,在申请内存的时候调用的是java.nio.ByteBuffer#allocateDirect

会new DirectByteBuffer,通过Cleaner.create创建Cleaner,同时传入Deallocator作为Runnable参数,在Cleaner.clean的时候会调用该Deallocator.run来处理

Cleaner继承自PhantomReference,包含一个ReferenceQueue,在DirectByteBuffer不再使用的时候,该对象是处于Java堆的,除了该PhantomReference引用了DirectByteBuffer外,没有其他引用的时候,jvm会把cleaner对象放入ReferenceQueue队列中。

PhantomReference继承了Reference,Reference会启动一个线程(java.lang.ref.Reference.ReferenceHandler#run)去调用队列中的cleaner.clean方法。

Netty内存释放

Netty使用的直接内存的释放方式和JDK的释放方式略有不同。Netty开始释放内存的时候是调用free方法的时候

io.netty.buffer.PoolArena#free
io.netty.buffer.PoolArena.DirectArena#destroyChunk

最终释放内存的方法有两种

  1. 利用反射获取unsafe,调用Unsafe#freeMemory
  2. 利用反射获取DirectByteBuffer#cleaner,通过反射调用cleaner.clean方法

两种不同的方式依赖的条件不同,使用场景也不同

使用反射调用cleaner.clean

要满足以下条件之一的时候使用这种方式

  1. 没有可使用的直接内存
  2. 不能获取unsafe
  3. directBuffer没有传入long、int的构造方法

使用unsafe

不能使用上面这种方式的都使用unsafe

Netty源码—七、内存释放的更多相关文章

  1. Netty源码分析--内存模型(上)(十一)

    前两节我们分别看了FastThreadLocal和ThreadLocal的源码分析,并且在第八节的时候讲到了处理一个客户端的接入请求,一个客户端是接入进来的,是怎么注册到多路复用器上的.那么这一节我们 ...

  2. Netty源码分析--内存模型(下)(十二)

    这一节我们一起看下分配过程 PooledByteBuf<T> allocate(PoolThreadCache cache, int reqCapacity, int maxCapacit ...

  3. Netty源码解析 -- 内存池与PoolArena

    我们知道,Netty使用直接内存实现Netty零拷贝以提升性能, 但直接内存的创建和释放可能需要涉及系统调用,是比较昂贵的操作,如果每个请求都创建和释放一个直接内存,那性能肯定是不能满足要求的. 这时 ...

  4. Netty源码解析 -- 内存对齐类SizeClasses

    在学习Netty内存池之前,我们先了解一下Netty的内存对齐类SizeClasses,它为Netty内存池中的内存块提供大小对齐,索引计算等服务方法. 源码分析基于Netty 4.1.52 Nett ...

  5. Netty源码分析第5章(ByteBuf)---->第8节: subPage级别的内存分配

    Netty源码分析第五章: ByteBuf 第八节: subPage级别的内存分配 上一小节我们剖析了page级别的内存分配逻辑, 这一小节带大家剖析有关subPage级别的内存分配 通过之前的学习我 ...

  6. Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第7节: 获取异线程释放的对象

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第七节: 获取异线程释放的对象 上一小节分析了异线程回收对象, 原理是通过与stack关联的WeakOrder ...

  7. Netty源码分析 (七)----- read过程 源码分析

    在上一篇文章中,我们分析了processSelectedKey这个方法中的accept过程,本文将分析一下work线程中的read过程. private static void processSele ...

  8. netty源码解析(4.0)-27 ByteBuf内存池:PoolArena-PoolThreadCache

    前面两章分析的PoolChunk和PoolSubpage,从功能上来说已经可以直接拿来用了.但直接使用这个两个类管理内存在高频分配/释放内存场景下会有性能问题,PoolChunk分配内存时算法复杂度最 ...

  9. Netty源码分析第5章(ByteBuf)---->第7节: page级别的内存分配

    Netty源码分析第五章: ByteBuf 第六节: page级别的内存分配 前面小节我们剖析过命中缓存的内存分配逻辑, 前提是如果缓存中有数据, 那么缓存中没有数据, netty是如何开辟一块内存进 ...

随机推荐

  1. LVM基本应用,扩展及缩减实现!

    LVM概述 [百度百科] LVM是逻辑盘卷管理(LogicalVolumeManager)的简称,它是Linux环境下对磁盘分区进行管理的一种机制,LVM是建立在硬盘和 分区之上的一个逻辑层,来提高磁 ...

  2. 洛谷 P1462 解题报告

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  3. arcEngine开发之根据点坐标创建Shp图层

    思路 根据点坐标创建Shapefile文件大致思路是这样的: (1)创建表的工作空间,通过 IField.IFieldsEdit.IField 等接口创建属性字段,添加到要素集中. (2)根据获取点的 ...

  4. MySQL常见备份方案

    MySQL常见备份方案有以下三种: mysqldump + binlog lvm + binlog xtrabackup 本例为方便演示,数据库里面数据为空.下面开始动手 mkdir /opt/bac ...

  5. Python_性能测试

    使用pip安装Python扩展库memory_profiler from memory_profiler import profile @profile #修饰器 def isPrime(n): if ...

  6. 关于overfit的随笔

    看到@ 爱可可-爱生活转发的文章.稍微看了下,在这里记录下. overfit是机器学习的一个重要概念.在狭义上可以定义为模型过于复杂,导致模型的generalization不够好.我认为应采用一个更广 ...

  7. token 防止csrf

    转自:ttps://www.ibm.com/developerworks/cn/web/1102_niugang_csrf/#icomments 当前防御 CSRF 的几种策略 验证 HTTP Ref ...

  8. js创建数组

    var a1 =  new Array(); var a2 =  new Array(7); var a3 =  new Array(100,"0",true); var a4 = ...

  9. 使用Ratpack与Spring Boot构建高性能JVM微服务

    在微服务天堂中Ratpack和Spring Boot是天造地设的一对.它们都是以开发者为中心的运行于JVM之上的web框架,侧重于生产率.效率以及轻量级部署.他们在服务程序的开发中带来了各自的好处.R ...

  10. TCP入门与实例讲解

    内容简介 TCP是TCP/IP协议栈的核心组成之一,对开发者来说,学习.掌握TCP非常重要. 本文主要内容包括:什么是TCP,为什么要学习TCP,TCP协议格式,通过实例讲解TCP的生命周期(建立连接 ...