P1490 买蛋糕

题目描述

野猫过生日,大家当然会送礼物了(咳咳,没送礼物的同志注意了哈!!),由于不知道送什么好,又考虑到实用性等其他问题,大家决定合伙给野猫买一个生日蛋糕。大家不知道最后要买的蛋糕的准确价格,而只会给蛋糕估价,即要买一个不超过多少钱的蛋糕。众OIer借此发挥:能否用最少的钱币数去凑成估价范围内的所有价值,使得不管蛋糕价值多少,都不用找钱……

现在问题由此引出:对于一个给定的n,能否用最少的不等的正整数去组成n以内(包括n)的所有的正整数呢?如果能,最少需要多少个正整数,用最少个数又有多少不同的组成方法呢?

输入输出格式

输入格式:

只有一行包含一个整数n(1<=n<=1000)。

输出格式:

一行两个数,第一个数是最少需要多少个数,第二个数是用最少个数的组成方案个数。两个答案用空格分隔。


  • 首先明确第一个问题:这个最小的正整数是多少?

也许你可以打表看出来,也许不能,但别急,我们有看似靠谱一点的思维方法

看看样例:6

可行方案:

①\(1\) \(2\) \(3\);

②\(1\) \(2\) \(4\).

我们发现,对于方案①,组成3的时候有两种方法(1+2或3),而方案②只有一种。换而言之,3的利用是有浪费的。而不浪费的方案②还可以组成7。

那么,我们咋让她(每个数)都用好自己呢

很简单,百合就行了

联想一下二进制位下的数

\(1\),\(10\),\(11\),\(100\),\(101\),\(110\),\(111\),\(1000\)...

可不是嘛,这个\(2^i\)的每个数利用率可高了

由此可知,二进制的位数即为这个最小的正整数


  • 想明白第一问以后,应该给出了一个相对的第二问的思维导向。(当然不绝对哈)

当每个数的利用率最大的时候,她们能够凑成的最大整数即为她们的和,这点是毋庸置疑的。

那么,在利用率相对不是那么大的时候呢?

我们注意到,此时已经有了一个限制条件:已有的最小正整数

手动模拟一下,确实是仍然成立的。(其实是不太会证啦)

这时候,我们就把参与量已使用的各数之和凑成的最大整数搞到一起去了

考虑\(dp[k]\)代表凑成时\(k\)的方案数。看看这时候还要压哪些信息进去。

显然,剩下的必要信息还有第\(i\)个数和第\(i\)个数的值\(j\)

\(dp[i][j][k]\)表示已选\(i\)个数,第\(i\)个数为\(j\),前\(i\)个数和为\(k\)(凑成的最大整数位\(k\))的时候的方案数

转移方程 \(dp[i+1][l][k+l]+=dp[i][j][k];\)

其中\(l\)为枚举的下一个填充数

核心代码:

    dp[1][1][1]=1;
    for(int i=1;i<ans;i++)
        for(int j=i;j<=(1<<(i-1));j++)
            for(int k=i*(i-1)/2;k<(1<<i);k++)
                for(int l=j+1;l<=k+1;l++)
                    if(l+k<=n)
                        dp[i+1][l][k+l]+=dp[i][j][k];
                    else
                        dp[i+1][l][n]+=dp[i][j][k];

注意\(j,k,l\)的上下界,都是被已经得到的第一问给约束住了

当然,也没必要跑这么死,比如\(k\)从\(i\)开始反而会快一些。

至于\(if\)和\(else\)的判断,是为了方便求最后结果的一点点小贪心了。


2018.5.2

洛谷 P1490 解题报告的更多相关文章

  1. 洛谷 P1462 解题报告

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  2. 洛谷 P1879 解题报告

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ ...

  3. 洛谷 P1069 解题报告

    P1069 细胞分裂 题目描述 \(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家.现在,他正在为一个细胞实验做准备工作:培养细胞样本. \(Hanks\) ...

  4. 洛谷 P2491 解题报告

    P2491 消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个 ...

  5. 洛谷 P2587 解题报告

    P2587 [ZJOI2008]泡泡堂 题目描述 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏 ...

  6. 洛谷 P1054 解题报告

    P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式,题目的 ...

  7. 洛谷 P1053 解题报告

    P1053 篝火晚会 题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了"小教官".在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有 ...

  8. 洛谷 P1057 解题报告

    P1057 传球游戏 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹 ...

  9. 洛谷 P1430 解题报告

    P1430 序列取数 题目描述 给定一个长为\(n\)的整数序列\((n<=1000)\),由\(A\)和\(B\)轮流取数(\(A\)先取).每个人可从序列的左端或右端取若干个数(至少一个), ...

随机推荐

  1. Vi/Vim 替换使用方法

    vi/vim 中可以使用 :s 命令来替换字符串.该命令有很多种不同细节使用方法,可以实现复杂的功能,记录几种在此,方便以后查询. :s/vivian/sky/ 替换当前行第一个 vivian 为 s ...

  2. B/S和C/S架构图解

    软件:B/S和C/S两种架构模式.接下来用三张图片解释,什么是B/S什么是C/S. 图片一:软件架构模式 图片二:C/S结构模式 图片三:B/S结构模式 相信图解胜过冗长文字的解释,什么是B/S什么是 ...

  3. 如何实现 集群化/Session 复制-doc(cluster-howto.html)

    源文档链接: http://tomcat.apache.org/tomcat-6.0-doc/cluster-howto.html 翻译日期: 2014年3月19日 翻译人员: 铁锚 感受: Tomc ...

  4. linux内核中的C语言常规算法(前提:你的编译器要支持typeof和type)

    学过C语言的伙伴都知道,曾经比较两个数,输出最大或最小的一个,或者是比较三个数,输出最大或者最小的那个,又或是两个数交换,又或是绝对值等等,其实这些算法在linux内核中通通都有实现,以下的代码是我从 ...

  5. LeetCode之“散列表”:Isomorphic Strings

    题目链接 题目要求: Given two strings s and t, determine if they are isomorphic. Two strings are isomorphic i ...

  6. saiku应用的调试

    ubuntu下解压saiku包后使用: 运行.sh命令(.bat是windows命令).运行时注意权限.可以先chmod a+x *.sh 提示,catali?.sh出错. 这是tomcat的一个文件 ...

  7. 如何写好一个UITableView(完整版)

    本文是直播分享的简单文字整理,直播共分为上.下两部分.第一部分:优酷 Or YouTube,第二部分:优酷 Demo 地址:KtTableView 如果你觉得UITableViewDelegate和U ...

  8. Android群英传笔记——摘要,概述,新的出发点,温故而知新,可以为师矣!

    Android群英传笔记--摘要,概述,新的出发点,温故而知新,可以为师矣! 当工作的越久,就越感到力不从心了,基础和理解才是最重要的,所以买了两本书,医生的<Android群英传>和主席 ...

  9. Global Financial Applications uses the following Public tables

    来自文档: Oracle  Financial Applications Technical Reference Manual  更多明细参考文档 Table Name                 ...

  10. mybati源码之ReuseExecutor

    /** * @author Clinton Begin */ public class ReuseExecutor extends BaseExecutor { private final Map&l ...