函数不能嵌套定义,但能嵌套调用(在调用一个函数的过程中再调用另一个函数)

函数间接或直接调用自己,称为递归调用

 汉诺塔问题

思想:简化为较为简单的问题 n=2

较为复杂的问题,采用数学归纳方法分析

递归什么时候终止:只剩一个圆盘的情况    A--到--B

费波纳茨数列

根据最大公约数的如下3条性质,采用递归法编写计算最大公约数的函数Gcd(),在主函数中调用该函数计算并输出从键盘任意输入的两正整数最大公约数
性质1  如果a>b,则a和b与a-b和b的最大公约数相同,即Gcd(a, b) = Gcd(a-b, b)
性质2  如果b>a,则a和b与a和b-a的最大公约数相同,即Gcd(a, b) = Gcd(a, b-a)
性质3  如果a=b,则a和b的最大公约数与a值和b值相同,即Gcd(a, b) = a = b

#include <stdio.h>
int Gcd(int a, int b);
int main()
{
int a, b, c;
printf("Input a,b:");
scanf("%d,%d", &a, &b);
c = Gcd(a, b);
if (c!=-)
printf("Greatest Common Divisor of %d and %d is %d\n", a, b, c);
else
printf("Input number should be positive!\n"); getchar();
getchar();
return ;
} int Gcd(int a, int b)
{
if (a<=||b<=)
return -;
if (a == b)
return a;
else if (a > b)
return Gcd(a-b, b);
else
return Gcd(a, b-a);
}

C语言 递归 汉诺塔问题 最大公约数问题的更多相关文章

  1. 用C语言实现汉诺塔自动递归演示程序

    用C语言实现汉诺塔自动递归演示程序 程序实现效果 1.变界面大小依照输入递归数改变. 2.汉诺塔自动移动演示. 3.采用gotoxy实现流畅刷新. 4.保留文字显示递归流程 程序展示及实现 githu ...

  2. 关于C语言解决汉诺塔(hanoi)问题

    C语言解决汉诺塔问题 汉诺塔是典型的递归调用问题: hanoi简介:印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣 ...

  3. 递归:汉诺塔 - 零基础入门学习Python024

    递归:汉诺塔 让编程改变世界 Change the world by program 似乎谈到递归算法就要拿汉诺塔来举例,没办法,因为小甲鱼小时候太笨了,这个游戏老是玩不过关,好不容易在自学编程的时候 ...

  4. 【C语言】汉诺塔问题

    之前遇见这个问题,非常费劲地理解了,并写出代码,然后过段时间,再遇见这个问题,又卡住了,如此反反复复两三次,才发现自己对递归的理解依然很肤浅.今天无聊,重温<算法:c语言实现>一书,又遇见 ...

  5. python递归——汉诺塔

    汉诺塔的传说 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了 ...

  6. 【Python学习之七】递归——汉诺塔问题的算法理解

    汉诺塔问题 汉诺塔的移动可以用递归函数非常简单地实现.请编写move(n, a, b, c)函数,它接收参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量,然后打印出把所有盘子从A借助B移动到C的 ...

  7. js 递归 汉诺塔的例子

    程序调用自身的编程技巧称为递归. //汉诺塔的游戏,n为圆盘编号数量,编号,a,b,c代表的是三个柱子 var hanio=function(n,a,b,c){     if(n>0){    ...

  8. python 递归-汉诺塔

    # 汉诺塔 a = "A" b = "B" c = "C" def hano(a, b, c, n): if n == 1: print(& ...

  9. C语言实现汉诺塔

    汉诺塔 要把A柱子上的盘子移动到C柱子上,在移动过程中可以借助B柱子,但是要求小的盘子在上大的盘子在下. 解题思路: 1.把A柱子上的前N-1个盘子借助C柱子,全部移动到B柱子上(过程暂不考虑),再把 ...

随机推荐

  1. OrientDB入门(1)Getting Started

    Running OrientDB the First Time First, download and extract OrientDB by selecting the appropriate pa ...

  2. ASP.NET CORE系列【一】搭建ASP.NET CORE项目

    为什么要使用 ASP.NET Core? NET Core 刚发布的时候根据介绍就有点心里痒痒,微软的尿性都懂的,新东西bug太多,现在2.0也发布很久了,决定研究一下. ASP.NET Core官方 ...

  3. Stanford依存句法关系解释

    ROOT:要处理文本的语句 IP:简单从句 NP:名词短语 VP:动词短语 PU:断句符,通常是句号.问号.感叹号等标点符号 LCP:方位词短语 PP:介词短语 CP:由'的'构成的表示修饰性关系的短 ...

  4. 路由测试-lee

    //get 路由 Route::get('/', 'WelcomeController@index'); Route::get('home', 'HomeController@index'); //路 ...

  5. Java-Maven(四):Eclipse集成Maven环境配置

    一般maven都需要集成到IDE上使用的,而不是单独的使用,常见的maven可集成IDE:eclipse.IntelliJ IDEA.但这里就只学习eclipse集成maven的基础上,进行maven ...

  6. python操作mysql增删查改

    # coding=utf-8 ''' python操作mysql,需安装MySQLdb驱动 安装MySQLdb,请访问 http://sourceforge.net/projects/mysql-py ...

  7. Angular筛选功能

    业务场景:依据级别(level )和主题(Subtype )向后台传参数,进行筛选向前台返回数据列表. 代码如下:其中filterChoose()用于弹出筛选下拉框,filterButton()用于选 ...

  8. EF CodeFirst方式 Fluent Api配置

    一.One-to-One Relationship[一对一关系] 两个表之间,只能由一个记录在另外一个表中.每一个主键的值,只能关联到另外一张表的一条或者零条记录.请记住,这个一对一的关系不是非常的普 ...

  9. DOM 节点

    <html> <head> <title>DOM 教程</title> </head> <body> <h1>DOM ...

  10. 基于gin框架和jwt-go中间件实现小程序用户登陆和token验证

    本文核心内容是利用jwt-go中间件来开发golang webapi用户登陆模块的token下发和验证,小程序登陆功能只是一个切入点,这套逻辑同样适用于其他客户端的登陆处理. 小程序登陆逻辑 小程序的 ...