Magic Ball Game

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2189    Accepted Submission(s): 634

Problem Description
When the magic ball game turns up, Kimi immediately falls in it. The interesting game is made up of N balls, each with a weight of w[i]. These N balls form a rooted tree, with the 1st ball as the root. Any ball in the game has either 0 or 2 children ball. If
a node has 2 children balls, we may define one as the left child and the other as the right child.
The rules are simple: when Kimi decides to drop a magic ball with a weight of X, the ball goes down through the tree from the root. When the magic ball arrives at a node in the tree, there's a possibility to be catched and stop rolling, or continue to roll
down left or right. The game ends when the ball stops, and the final score of the game depends on the node at which it stops.
After a long-time playing, Kimi now find out the key of the game. When the magic ball arrives at node u weighting w[u], it follows the laws below:
1  If X=w[u] or node u has no children balls, the magic ball stops.
2  If X<w[u], there's a possibility of 1/2 for the magic ball to roll down either left or right.
3  If X>w[u], the magic ball will roll down to its left child in a possibility of 1/8, while the possibility of rolling down right is 7/8.
In order to choose the right magic ball and achieve the goal, Kimi wonders what's the possibility for a magic ball with a weight of X to go past node v. No matter how the magic ball rolls down, it counts if node v exists on the path that the magic ball goes
along.
Manual calculating is fun, but programmers have their ways to reach the answer. Now given the tree in the game and all Kimi's queries, you're required to answer the possibility he wonders.
 
Input
The input contains several test cases. An integer T(T≤15) will exist in the first line of input, indicating the number of test cases.
Each test case begins with an integer N(1≤N≤105), indicating the number of nodes in the tree. The following line contains N integers w[i], indicating the weight of each node in the tree. (1 ≤ i ≤ N, 1 ≤ w[i] ≤ 109, N is odd)
The following line contains the number of relationships M. The next M lines, each with three integers u,a and b(1≤u,a,b≤N), denotes that node a and b are respectively the left child and right child of node u. You may assume the tree contains exactly N nodes
and (N-1) edges.
The next line gives the number of queries Q(1≤Q≤105). The following Q lines, each with two integers v and X(1≤v≤N,1≤X≤109), describe all the queries.
 
Output
If the magic ball is impossible to arrive at node v, output a single 0. Otherwise, you may easily find that the answer will be in the format of 7x/2y . You're only required to output the x and y for each query, separated by a blank. Each
answer should be put down in one line.
 
Sample Input
1
3
2 3 1
1
1 2 3
3
3 2
1 1
3 4
 
Sample Output
0
0 0
1 3
 
Source
/*
hdu4605 树状数组+离散化+dfs
一个很明显的错误,在网上找了几个测试案例居然都过了TAT,也是无语
最开始发现可以通过判断你走到当前节点左右的次数 和 比你小的个数 比X大 1/2 1/2 比X小 1/8 7/8
相当于比X大时有一个2,当比X小时有3个2 7则看情况。
所以可以遍历树,然后判断。 比当前数小的数的个数则用树状数组维护 但是最开始写出来翻了很2的错误,我只保存了到当前节点小的数个数
(即没有区分左右)以及左右次数,但实际上这样并不能得出有多少次在比它小
的时候往右走即7/8的次数 于是乎把树状数组保存的内容弄成二维的就好了。然后就是最开始的离散化了
hhh-2016-03-03 22:57:09
*/
#include <algorithm>
#include <cmath>
#include <queue>
#include <iostream>
#include <cstring>
#include <map>
#include <cstdio>
#include <vector>
#include <functional>
using namespace std;
typedef long long ll;
const int maxn = 150050;
const int inf = 0x3f3f3f3f;
int s[maxn*2][2];
int n,tot;
int ans[maxn][2];
int vec[maxn*2];
int vis[maxn];
struct node
{
int val;
int l,r;
} pnode[maxn]; vector<pair<int,int> >qu[maxn];
int lowbit(int x)
{
return x&(-x);
} void add(int x,int val,int i)
{
while(x <= tot)
{
s[x][i]+=val;
x += lowbit(x);
}
} int sum(int x,int i)
{
int cnt = 0;
while(x)
{
cnt += s[x][i];
x -= lowbit(x);
}
return cnt;
} void dfs(int u,int l,int r)
{
int lson=pnode[u].l,rson=pnode[u].r,pos;
for(int i = 0; i < (int)qu[u].size(); i++)
{
int id = qu[u][i].first;
int lim = qu[u][i].second;
pos = lower_bound(vec,vec+tot,lim)-vec+1;
int ls = sum(pos-1,0);
int rs = sum(pos-1,1);
int lls = sum(pos,0);
int rrs = sum(pos,1);
if(ls+rs != lls+rrs)
{
ans[id][0] = -1;
continue;
}
ans[id][0] = (ls+rs)*2+l+r;
ans[id][1] = rs;
}
pos = lower_bound(vec,vec+tot,pnode[u].val)-vec+1; if(lson != -1)
{
add(pos,1,0);
dfs(lson,l+1,r);
add(pos,-1,0);
}
if(rson != -1)
{
add(pos,1,1);
dfs(rson,l,r+1);
add(pos,-1,1);
}
return ;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(s,0,sizeof(s));
memset(ans,0,sizeof(ans));
int m,q,M,v;
tot = 0;
scanf("%d",&n);
for(int i = 1; i <= n; i++)
{
scanf("%d",&pnode[i].val);
pnode[i].l = pnode[i].r = -1;
vec[tot++] = (pnode[i].val);
}
scanf("%d",&m);
for(int i =1; i <= m; i++)
{
int x;
scanf("%d",&x);
scanf("%d%d",&pnode[x].l,&pnode[x].r);
}
scanf("%d",&q);
for(int i =1; i <= q+n; i++)qu[i].clear();
for(int i =1; i <= q; i++)
{
scanf("%d%d",&v,&M);
qu[v].push_back(make_pair(i,M));
vec[tot++] = M;
}
sort(vec,vec+tot);
tot = unique(vec,vec+tot)-vec;
dfs(1,0,0);
for(int i =1; i <=q ; i++)
{
if(ans[i][0] == -1)
printf("0\n");
else
printf("%d %d\n",ans[i][1],ans[i][0]);
}
}
return 0;
}

  

hdu4605 树状数组+离散化+dfs的更多相关文章

  1. (好题)树状数组+离散化+DFS序+离线/莫队 HDOJ 4358 Boring counting

    题目传送门 题意:给你一棵树,树上的每个节点都有树值,给m个查询,问以每个点u为根的子树下有多少种权值恰好出现k次. 分析:首先要对权值离散化,然后要将树形转换为线形,配上图:.然后按照右端点从小到大 ...

  2. BZOJ_5055_膜法师_树状数组+离散化

    BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...

  3. BZOJ3881[Coci2015]Divljak——AC自动机+树状数组+LCA+dfs序+树链的并

    题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  4. POJ 2299 【树状数组 离散化】

    题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...

  5. BZOJ 3881 [COCI2015]Divljak (Trie图+Fail树+树链的并+树状数组维护dfs序)

    题目大意: Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  6. HDU-4605 Magic Ball Game 树状数组+离散+dfs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4605 题意:给一颗树,每个节点有个权值w[u],每个节点只有两个儿子或者没有儿子,从根节点放下一个小球 ...

  7. HDU5877 Weak Pair dfs + 线段树/树状数组 + 离散化

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: weak pair的要求: 1.u是v的祖先(注意不一定是父亲) 2.val[u]*va ...

  8. hdu 5877 Weak Pair dfs序+树状数组+离散化

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Prob ...

  9. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

随机推荐

  1. 【审核】检查iOS项目中是否使用了IDFA

    (1)什么是IDFA 关于IDFA,在提交应用到App Store时,iTunes Connect有如下说明: 这里说到检查项目中是否包含IDFA,那如何来对iOS项目(包括第三方SDK)检查是否包含 ...

  2. 日志 --BUG记录

    2014-12-15日 在做520wawa的免费推广   部署web应用时 错把path设置为"/*",导致启动tomcat时,导致错误 <Context path=&quo ...

  3. Hibernate之Hibernate的体系结构

    体系结构简图: 这是一张体系结构的简图,其中的hibernate.properties文件的作用相当于配置文件hibernate.cfg.xml XML Mapping对应的就是映射文件 XXXX.h ...

  4. JAVA_SE基础——8.基本数据类型

    基本数据类型有:整数类型.浮点类型.字符类型.布尔类型 整数类型 整数类型用来存储整数数值,即没有小数部分的数值.与C.C++语言相同,整数在Java语言中有3种表示形式:十进制.八进制和十六进制. ...

  5. php代码一样,编码不同报错

    php代码一样,编码不同报错 两个php代码完全一样,但是就报错,比如说声明比如在very first,这种,可以把编码设置utf-8 无bom

  6. javascript递归函数

    递归函数:是指函数直接或间接调用函数本身,则称该函数为递归函数. 这句话理解起来并不难,从概念上出发,给出以下的例子: function foo(){ console.log("函数 foo ...

  7. 记一次oracle crs无法重启事故

    今天在修改了数据库参数后,关闭数据库及crs,然后重新启动了服务器,服务器启动完成之后,发现数据库无法启动,过程如下: step1:重启数据库 $ su - grid $ srvctl stop da ...

  8. angular2 学习笔记 ( 状态管理 state management )

    更新 : 2017-12-29  ng5 移除 zone.js https://zhuanlan.zhihu.com/p/29577461 zone 的用途就是拦截游览器事件, 比如 click, a ...

  9. 配置ssh无密钥登陆

    ssh 无密码登录要使用公钥与私钥. linux下可以用用ssh-keygen生成公钥/私钥对,下面以CentOS为例. 有机器LxfN1(192.168.136.128),LxfN2(192.168 ...

  10. [洛谷P1198/BZOJ1012][JSOI2008] 最大数 - 树状数组/线段树?

    其实已经学了树状数组和线段树,然而懒得做题,所以至今没写多少博客 Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数 ...