·哦,这题要用优先队列?那大米饼就扔一个手写堆上去吧!

·英文题,述大意:

      输入n个长度为n的序列(题中是k,2<=k<=750)。一种结果定义为:从每个序列中都要挑选一个数加起来。挑选的不同种结果含有的元素可以重复,现在你需要求出在所有的nn个结果中,找到其中最小的n个结果,然后按照从小到大顺序输出这n个结果。

·分析:

     我们可以从简单情况加以考虑以得到普遍结论。

     当只有1个序列时,那么就直接排个序就可以了(虽然不在数据范围里)。

     当只有两个序列,也就是挑选出两个数(来自不同序列)的和我们要的结果。首先,我们怎么取得最小的那个和?毫无疑问,就是这个序列两个的最小数的和。那么第二小的数怎么取得?嗯嗯,肯定是这样:

 第二小数=Min(1序列最小数+2序列第二小数,1序列第二小数+2序列最小数)

这样一直思考下去,现在我们知道了第i小的结果,要的到第(i+1)小的结果,就有两种选择加以比较。为了便于我们找到单个序列中第i大,我们给所有序列从小到大排序。

      排序后,我们可以知道一个这样的结论:假设现在选择的第p大的组合是a[i]+b[j](注意,排好序了的),那么第p大肯定不会去考虑a[i]+b[j+1],因为a[i]+b[j]<a[i]+b[j+1]。这句奇怪的话只是想说明一个问题,在a[i]+b[j]都还没有被选为答案时,a[k]+b[t](k>=i,t>=j,且等号不同时成立)肯定不用管(管的意思是拿去进行Min的比较)。

      快速维护大小关系,我们可以使用优先队列,将各式各样的组合塞进去。但是我们把所有的压进去,时间耗费太多(n*n啊!)。所以,使用上文的结论,那么上文在CODE中的意义是,a[i]+b[j]在优先队列中时,a[k]+b[t]无需存在。当我们挑选第k大的结果时,就是队首元素啦。那么接下来怎么维护?我们是用有序表:(注意a,b还是排好序了的)

               a1+b1<=a1+b2<=a1+b3……<=a1+bn

                a2+b1<=a2+b2<=a2+b3……<=a2+bn

     这样做的话,我们维护了a的有序,那么对于每个组合,当a[i]+b[j]出队被选为答案后,我们就立刻将a[i]+b[j+1](前提是j+1<=n)加入队列作为将来可能的答案。到此我们可以推而广之,有n个序列时,我们输入一个b就和合并一次,将最小的答案直接塞到a中,操作n-1次合并,就完事啦。

     手写了一个小堆堆,但是这道题数据小,手写堆没发挥优势。

     代码来了:

 #include<stdio.h>
#include<algorithm>
#define Exchange(a,b) a^=b^=a^=b
#define go(i,a,b) for(int i=a;i<=b;i++)
using namespace std;const int N=;
int n,a[N],b[N],val[N],I[N];
struct Heap
{
int sz,cur[N],fa,v;
inline void Up_Adjust(int u)
{
fa=u>>;while(u!=&&val[cur[fa]]>val[cur[u]])
Exchange(cur[fa],cur[u]),fa=(u=fa)>>;
}
inline void Down_Adjust(int u)
{
v=u<<;while(v<=sz){v+=val[cur[v]]>val[cur[v+]]&&v<sz;
if(val[cur[v]]>=val[cur[u]])return;
Exchange(cur[u],cur[v]);v=(u=v)<<;}
}
inline void Insert(int i){cur[++sz]=i,Up_Adjust(sz);}
inline void Delete(){Exchange(cur[],cur[sz]);sz--;Down_Adjust();}
}q;
int main()
{
while(~scanf("%d",&n))
{
go(i,,n)scanf("%d",&a[i]);sort(a+,a+n+);
go(k,,n)
{
go(i,,n)scanf("%d",&b[i]);sort(b+,b+n+);q.sz=;
go(i,,n)val[i]=a[i]+b[],I[i]=,q.Insert(i);
go(j,,n){int i=q.cur[];a[j]=val[i];q.Delete();
if(I[i]<n)val[i]+=-b[I[i]]+b[I[i]+],I[i]++,q.Insert(i);}
}
printf("%d",a[]);go(i,,n)printf(" %d",a[i]);puts("");
}
return ;
}//Paul_Guderian

这是一段很长很长的旅程,用尽所有的时光永无止境

我不停地奔跑呼喊和追寻,在我的路上寻找生命的意义。————汪峰《我的路》

【UVA–11997 K Smallest Sums 】的更多相关文章

  1. 【UVA 11997 K Smallest Sums】优先级队列

    来自<训练指南>优先级队列的例题. 题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18702 题意:给定 ...

  2. UVa 11997 K Smallest Sums 优先队列&amp;&amp;打有序表&amp;&amp;归并

    UVA - 11997 id=18702" target="_blank" style="color:blue; text-decoration:none&qu ...

  3. UVA 11997 K Smallest Sums 优先队列 多路合并

    vjudge 上题目链接:UVA 11997 题意很简单,就是从 k 个数组(每个数组均包含 k 个正整数)中各取出一个整数相加(所以可以得到 kk 个结果),输出前 k 小的和. 这时训练指南上的一 ...

  4. UVa 11997 K Smallest Sums - 优先队列

    题目大意 有k个长度为k的数组,从每个数组中选出1个数,再把这k个数进行求和,问在所有的这些和中,最小的前k个和. 考虑将前i个数组合并,保留前k个和.然后考虑将第(i + 1)个数组和它合并,保留前 ...

  5. 优先队列 UVA 11997 K Smallest Sums

    题目传送门 题意:训练指南P189 分析:完全参考书上的思路,k^k的表弄成有序表: 表1:A1 + B1 <= A1 + B2 <= .... A1 + Bk 表2:A2 + B1 &l ...

  6. uva 11997 K Smallest Sums 优先队列处理多路归并问题

    题意:K个数组每组K个值,每次从一组中选一个,共K^k种,问前K个小的. 思路:优先队列处理多路归并,每个状态含有K个元素.详见刘汝佳算法指南. #include<iostream> #i ...

  7. UVA 11997 K Smallest Sums (多路归并)

    从包含k个整数的k个数组中各选一个求和,在所有的和中选最小的k个值. 思路是多路归并,对于两个长度为k的有序表按一定顺序选两个数字组成和,(B表已经有序)会形成n个有序表 A1+B1<=A1+B ...

  8. 11997 - K Smallest Sums(优先队列)

    11997 - K Smallest Sums You’re given k arrays, each array has k integers. There are kk ways to pick ...

  9. UVA-11997 K Smallest Sums

    UVA - 11997 K Smallest Sums Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & ...

随机推荐

  1. 2017 国庆湖南 Day6

    期望得分:100+100+60=260 实际得分:100+85+0=185 二分最后一条相交线段的位置 #include<cstdio> #include<iostream> ...

  2. [知识梳理]课本3&9.1

    函数:关键词:参数.返回值.函数返回类型.函数体. 函数按照返回类型,可以分为有参函数和无参函数. 函数根据是否有返回值,可以分为返回值函数和非返回值函数.     函数的定义:函数的定义可以放在任意 ...

  3. electron打包vue项目

    electron是什么 Electron是由Github开发,用HTML,CSS和JavaScript来构建跨平台桌面应用程序的一个开源库. Electron通过将Chromium和Node.js合并 ...

  4. 《javascript设计模式与开发实践》阅读笔记(10)—— 组合模式

    组合模式:一些子对象组成一个父对象,子对象本身也可能是由一些孙对象组成. 有点类似树形结构的意思,这里举一个包含命令模式的例子 var list=function(){ //创建接口对象的函数 ret ...

  5. php的借用其他网站的页面覆盖Logo的技巧

    php的借用其他网站的页面覆盖Logo的技巧, <body> <div id="red_f"></div> <div class=&quo ...

  6. clang++ 链接问题 和 VS Code

    clang++ 链接问题 和 VS Code 如果你在windows上使用clang 并且同时安装有vs和mingw, clang链接是会自动使用msvs, 链接时会有LINK error LINK ...

  7. javaScript识别网址文本并转为链接文本

    最近项目有个需求:用户之间发送消息时,如果发送者输入的信息中含有网址文本,要在接受者界面中显示网址链接,点击该链接直接跳转到网页.这个功能和 QQ 发送网址文本的效果非常像,可以说是一模一样的. 思路 ...

  8. JQ 标签相关知识

    1.判断 checkbox 和 radio 是否选中 if($("标签选择器").is(":checked")) 2.改变 checkbox 选中状态 .pro ...

  9. fetch简明学习

    前面的话 Fetch API 提供了一个 JavaScript接口,用于访问和操纵HTTP管道的部分,例如请求和响应.它还提供了一个全局 fetch()方法,该方法提供了一种简单,合乎逻辑的方式来跨网 ...

  10. 详解Class

    Classs是es6提供的类,相当于es5的构造函数. 写法: class Foo { constructor () { // new 的时候会调用该方法,可以通过return改变构造函数的返回值 r ...