·哦,这题要用优先队列?那大米饼就扔一个手写堆上去吧!

·英文题,述大意:

      输入n个长度为n的序列(题中是k,2<=k<=750)。一种结果定义为:从每个序列中都要挑选一个数加起来。挑选的不同种结果含有的元素可以重复,现在你需要求出在所有的nn个结果中,找到其中最小的n个结果,然后按照从小到大顺序输出这n个结果。

·分析:

     我们可以从简单情况加以考虑以得到普遍结论。

     当只有1个序列时,那么就直接排个序就可以了(虽然不在数据范围里)。

     当只有两个序列,也就是挑选出两个数(来自不同序列)的和我们要的结果。首先,我们怎么取得最小的那个和?毫无疑问,就是这个序列两个的最小数的和。那么第二小的数怎么取得?嗯嗯,肯定是这样:

 第二小数=Min(1序列最小数+2序列第二小数,1序列第二小数+2序列最小数)

这样一直思考下去,现在我们知道了第i小的结果,要的到第(i+1)小的结果,就有两种选择加以比较。为了便于我们找到单个序列中第i大,我们给所有序列从小到大排序。

      排序后,我们可以知道一个这样的结论:假设现在选择的第p大的组合是a[i]+b[j](注意,排好序了的),那么第p大肯定不会去考虑a[i]+b[j+1],因为a[i]+b[j]<a[i]+b[j+1]。这句奇怪的话只是想说明一个问题,在a[i]+b[j]都还没有被选为答案时,a[k]+b[t](k>=i,t>=j,且等号不同时成立)肯定不用管(管的意思是拿去进行Min的比较)。

      快速维护大小关系,我们可以使用优先队列,将各式各样的组合塞进去。但是我们把所有的压进去,时间耗费太多(n*n啊!)。所以,使用上文的结论,那么上文在CODE中的意义是,a[i]+b[j]在优先队列中时,a[k]+b[t]无需存在。当我们挑选第k大的结果时,就是队首元素啦。那么接下来怎么维护?我们是用有序表:(注意a,b还是排好序了的)

               a1+b1<=a1+b2<=a1+b3……<=a1+bn

                a2+b1<=a2+b2<=a2+b3……<=a2+bn

     这样做的话,我们维护了a的有序,那么对于每个组合,当a[i]+b[j]出队被选为答案后,我们就立刻将a[i]+b[j+1](前提是j+1<=n)加入队列作为将来可能的答案。到此我们可以推而广之,有n个序列时,我们输入一个b就和合并一次,将最小的答案直接塞到a中,操作n-1次合并,就完事啦。

     手写了一个小堆堆,但是这道题数据小,手写堆没发挥优势。

     代码来了:

 #include<stdio.h>
#include<algorithm>
#define Exchange(a,b) a^=b^=a^=b
#define go(i,a,b) for(int i=a;i<=b;i++)
using namespace std;const int N=;
int n,a[N],b[N],val[N],I[N];
struct Heap
{
int sz,cur[N],fa,v;
inline void Up_Adjust(int u)
{
fa=u>>;while(u!=&&val[cur[fa]]>val[cur[u]])
Exchange(cur[fa],cur[u]),fa=(u=fa)>>;
}
inline void Down_Adjust(int u)
{
v=u<<;while(v<=sz){v+=val[cur[v]]>val[cur[v+]]&&v<sz;
if(val[cur[v]]>=val[cur[u]])return;
Exchange(cur[u],cur[v]);v=(u=v)<<;}
}
inline void Insert(int i){cur[++sz]=i,Up_Adjust(sz);}
inline void Delete(){Exchange(cur[],cur[sz]);sz--;Down_Adjust();}
}q;
int main()
{
while(~scanf("%d",&n))
{
go(i,,n)scanf("%d",&a[i]);sort(a+,a+n+);
go(k,,n)
{
go(i,,n)scanf("%d",&b[i]);sort(b+,b+n+);q.sz=;
go(i,,n)val[i]=a[i]+b[],I[i]=,q.Insert(i);
go(j,,n){int i=q.cur[];a[j]=val[i];q.Delete();
if(I[i]<n)val[i]+=-b[I[i]]+b[I[i]+],I[i]++,q.Insert(i);}
}
printf("%d",a[]);go(i,,n)printf(" %d",a[i]);puts("");
}
return ;
}//Paul_Guderian

这是一段很长很长的旅程,用尽所有的时光永无止境

我不停地奔跑呼喊和追寻,在我的路上寻找生命的意义。————汪峰《我的路》

【UVA–11997 K Smallest Sums 】的更多相关文章

  1. 【UVA 11997 K Smallest Sums】优先级队列

    来自<训练指南>优先级队列的例题. 题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18702 题意:给定 ...

  2. UVa 11997 K Smallest Sums 优先队列&amp;&amp;打有序表&amp;&amp;归并

    UVA - 11997 id=18702" target="_blank" style="color:blue; text-decoration:none&qu ...

  3. UVA 11997 K Smallest Sums 优先队列 多路合并

    vjudge 上题目链接:UVA 11997 题意很简单,就是从 k 个数组(每个数组均包含 k 个正整数)中各取出一个整数相加(所以可以得到 kk 个结果),输出前 k 小的和. 这时训练指南上的一 ...

  4. UVa 11997 K Smallest Sums - 优先队列

    题目大意 有k个长度为k的数组,从每个数组中选出1个数,再把这k个数进行求和,问在所有的这些和中,最小的前k个和. 考虑将前i个数组合并,保留前k个和.然后考虑将第(i + 1)个数组和它合并,保留前 ...

  5. 优先队列 UVA 11997 K Smallest Sums

    题目传送门 题意:训练指南P189 分析:完全参考书上的思路,k^k的表弄成有序表: 表1:A1 + B1 <= A1 + B2 <= .... A1 + Bk 表2:A2 + B1 &l ...

  6. uva 11997 K Smallest Sums 优先队列处理多路归并问题

    题意:K个数组每组K个值,每次从一组中选一个,共K^k种,问前K个小的. 思路:优先队列处理多路归并,每个状态含有K个元素.详见刘汝佳算法指南. #include<iostream> #i ...

  7. UVA 11997 K Smallest Sums (多路归并)

    从包含k个整数的k个数组中各选一个求和,在所有的和中选最小的k个值. 思路是多路归并,对于两个长度为k的有序表按一定顺序选两个数字组成和,(B表已经有序)会形成n个有序表 A1+B1<=A1+B ...

  8. 11997 - K Smallest Sums(优先队列)

    11997 - K Smallest Sums You’re given k arrays, each array has k integers. There are kk ways to pick ...

  9. UVA-11997 K Smallest Sums

    UVA - 11997 K Smallest Sums Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & ...

随机推荐

  1. C++中文件的读写

    C++中文件的读写 在C++中如何实现文件的读写? 一.ASCII 输出 为了使用下面的方法, 你必须包含头文件<fstream.h>(译者注:在标准C++中,已经使用<fstrea ...

  2. 第九条:覆盖equals方法时总要覆盖hashCode方法

    Object类的hashCode方法: public native int hashCode();   是一个本地方法. 其中这个方法的主要注释如下: Whenever it is invoked o ...

  3. 2017 国庆湖南 Day5

    期望得分:76+80+30=186 实际得分:72+10+0=82 先看第一问: 本题不是求方案数,所以我们不关心 选的数是什么以及的选的顺序 只关心选了某个数后,对当前gcd的影响 预处理 cnt[ ...

  4. MySQL搭建主从数据库 实现读写分离

    首先声明,实际生产中,网站为了提高用户体验,性能等,将数据库实现读写分离是有必要的,我们让主数据库去写入数据,然后当用户查询的时候,然后在从数据库读取数据,故能减轻数据库的压力,实现良好的用户体验! ...

  5. python之路--day6--字符编码

    一.知识储备 cpu--控制和运算 内存--暂时存储cpu需要的数据 硬盘--永久保存数据2.文本编辑器的原理存储原理 1,启动文本编辑器 2,在编辑器上输入内容---此时输入内容还在内存上 3,保存 ...

  6. 逆向集录_00_不同程序OEP特征总结

    在分析/逆向 程序时,如果事先知道这类程序的一些特征,那将会是事半功倍的: 分析/逆向 程序,和写程序不同,比喻的话:写程序像在作案,分析/逆向 程序就像是在破案,对破案来讲,重在假想和推理: 特征1 ...

  7. Oracle银行存取钱系统

    Oracle银行存取钱系统 /* 银行系统 要求: 1.创建一个用户信息表(userinfo).一个交易信息表(deal) 2.用户信息表字段:用户编号.用户名称.密码.余额 交易信息表字段:编号.交 ...

  8. 深入解析OpenCart的代理类proxy

    1.什么是代理类 代理类指的是连接远程对象或不可见对象的接口,通常被客户端调用来连接真实的服务对象.更准确的定义参见维基百科 2.代理的作用 作为一个包装类,提供额外的功能 延迟加载 在本文讲到的op ...

  9. Mysql数据库主从配置

    一.为什么要使用数据库主从架构 一个网站损耗资源最厉害的就是数据库,最易崩溃的也是数据库,而数据库崩溃带来的后果是非常严重的.数据库分为读和写操作,在实际的应用中,读操作的损耗远比写操作多太多,因此读 ...

  10. Python-字典、集合、字符编码、文件操作整理-Day3

    1.字典 1.1.为什么有字典: 有个需求,存所有人的信息 这时候列表就不能轻易的表示完全names = ['stone','liang'] 1.2.元组: 定义符号()t = (1,2,3)tupl ...