【UVA–11997 K Smallest Sums 】
·哦,这题要用优先队列?那大米饼就扔一个手写堆上去吧!
·英文题,述大意:
输入n个长度为n的序列(题中是k,2<=k<=750)。一种结果定义为:从每个序列中都要挑选一个数加起来。挑选的不同种结果含有的元素可以重复,现在你需要求出在所有的nn个结果中,找到其中最小的n个结果,然后按照从小到大顺序输出这n个结果。
·分析:
我们可以从简单情况加以考虑以得到普遍结论。
当只有1个序列时,那么就直接排个序就可以了(虽然不在数据范围里)。
当只有两个序列,也就是挑选出两个数(来自不同序列)的和我们要的结果。首先,我们怎么取得最小的那个和?毫无疑问,就是这个序列两个的最小数的和。那么第二小的数怎么取得?嗯嗯,肯定是这样:
第二小数=Min(1序列最小数+2序列第二小数,1序列第二小数+2序列最小数)
这样一直思考下去,现在我们知道了第i小的结果,要的到第(i+1)小的结果,就有两种选择加以比较。为了便于我们找到单个序列中第i大,我们给所有序列从小到大排序。
排序后,我们可以知道一个这样的结论:假设现在选择的第p大的组合是a[i]+b[j](注意,排好序了的),那么第p大肯定不会去考虑a[i]+b[j+1],因为a[i]+b[j]<a[i]+b[j+1]。这句奇怪的话只是想说明一个问题,在a[i]+b[j]都还没有被选为答案时,a[k]+b[t](k>=i,t>=j,且等号不同时成立)肯定不用管(管的意思是拿去进行Min的比较)。
快速维护大小关系,我们可以使用优先队列,将各式各样的组合塞进去。但是我们把所有的压进去,时间耗费太多(n*n啊!)。所以,使用上文的结论,那么上文在CODE中的意义是,a[i]+b[j]在优先队列中时,a[k]+b[t]无需存在。当我们挑选第k大的结果时,就是队首元素啦。那么接下来怎么维护?我们是用有序表:(注意a,b还是排好序了的)
a1+b1<=a1+b2<=a1+b3……<=a1+bn
a2+b1<=a2+b2<=a2+b3……<=a2+bn
这样做的话,我们维护了a的有序,那么对于每个组合,当a[i]+b[j]出队被选为答案后,我们就立刻将a[i]+b[j+1](前提是j+1<=n)加入队列作为将来可能的答案。到此我们可以推而广之,有n个序列时,我们输入一个b就和合并一次,将最小的答案直接塞到a中,操作n-1次合并,就完事啦。
手写了一个小堆堆,但是这道题数据小,手写堆没发挥优势。
代码来了:
#include<stdio.h>
#include<algorithm>
#define Exchange(a,b) a^=b^=a^=b
#define go(i,a,b) for(int i=a;i<=b;i++)
using namespace std;const int N=;
int n,a[N],b[N],val[N],I[N];
struct Heap
{
int sz,cur[N],fa,v;
inline void Up_Adjust(int u)
{
fa=u>>;while(u!=&&val[cur[fa]]>val[cur[u]])
Exchange(cur[fa],cur[u]),fa=(u=fa)>>;
}
inline void Down_Adjust(int u)
{
v=u<<;while(v<=sz){v+=val[cur[v]]>val[cur[v+]]&&v<sz;
if(val[cur[v]]>=val[cur[u]])return;
Exchange(cur[u],cur[v]);v=(u=v)<<;}
}
inline void Insert(int i){cur[++sz]=i,Up_Adjust(sz);}
inline void Delete(){Exchange(cur[],cur[sz]);sz--;Down_Adjust();}
}q;
int main()
{
while(~scanf("%d",&n))
{
go(i,,n)scanf("%d",&a[i]);sort(a+,a+n+);
go(k,,n)
{
go(i,,n)scanf("%d",&b[i]);sort(b+,b+n+);q.sz=;
go(i,,n)val[i]=a[i]+b[],I[i]=,q.Insert(i);
go(j,,n){int i=q.cur[];a[j]=val[i];q.Delete();
if(I[i]<n)val[i]+=-b[I[i]]+b[I[i]+],I[i]++,q.Insert(i);}
}
printf("%d",a[]);go(i,,n)printf(" %d",a[i]);puts("");
}
return ;
}//Paul_Guderian
这是一段很长很长的旅程,用尽所有的时光永无止境
我不停地奔跑呼喊和追寻,在我的路上寻找生命的意义。————汪峰《我的路》
【UVA–11997 K Smallest Sums 】的更多相关文章
- 【UVA 11997 K Smallest Sums】优先级队列
来自<训练指南>优先级队列的例题. 题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18702 题意:给定 ...
- UVa 11997 K Smallest Sums 优先队列&&打有序表&&归并
UVA - 11997 id=18702" target="_blank" style="color:blue; text-decoration:none&qu ...
- UVA 11997 K Smallest Sums 优先队列 多路合并
vjudge 上题目链接:UVA 11997 题意很简单,就是从 k 个数组(每个数组均包含 k 个正整数)中各取出一个整数相加(所以可以得到 kk 个结果),输出前 k 小的和. 这时训练指南上的一 ...
- UVa 11997 K Smallest Sums - 优先队列
题目大意 有k个长度为k的数组,从每个数组中选出1个数,再把这k个数进行求和,问在所有的这些和中,最小的前k个和. 考虑将前i个数组合并,保留前k个和.然后考虑将第(i + 1)个数组和它合并,保留前 ...
- 优先队列 UVA 11997 K Smallest Sums
题目传送门 题意:训练指南P189 分析:完全参考书上的思路,k^k的表弄成有序表: 表1:A1 + B1 <= A1 + B2 <= .... A1 + Bk 表2:A2 + B1 &l ...
- uva 11997 K Smallest Sums 优先队列处理多路归并问题
题意:K个数组每组K个值,每次从一组中选一个,共K^k种,问前K个小的. 思路:优先队列处理多路归并,每个状态含有K个元素.详见刘汝佳算法指南. #include<iostream> #i ...
- UVA 11997 K Smallest Sums (多路归并)
从包含k个整数的k个数组中各选一个求和,在所有的和中选最小的k个值. 思路是多路归并,对于两个长度为k的有序表按一定顺序选两个数字组成和,(B表已经有序)会形成n个有序表 A1+B1<=A1+B ...
- 11997 - K Smallest Sums(优先队列)
11997 - K Smallest Sums You’re given k arrays, each array has k integers. There are kk ways to pick ...
- UVA-11997 K Smallest Sums
UVA - 11997 K Smallest Sums Time Limit: 1000MS Memory Limit: Unknown 64bit IO Format: %lld & ...
随机推荐
- Python choice() 函数
Python choice() 函数 Python 数字 描述 choice() 方法返回一个列表,元组或字符串的随机项. 语法 以下是 choice() 方法的语法: import random ...
- 一句话了解JAVA与大数据之间的关系
大数据无疑是目前IT领域的最受关注的热词之一.几乎凡事都要挂上点大数据,否则就显得你OUT了.如果再找一个可以跟大数据并驾齐驱的IT热词,JAVA无疑是跟大数据并驾齐驱的一个词语.很多人在提到大数据的 ...
- postcss的安装与使用
我是经过公司另外一个同事推荐的这个 他是一个资深的大哥哥 我觉得我确实需要跟多的学习和成长 而且我觉得我应该听他的话 多学学新知识 最近一直在做适配的网站 会出现很多媒体查询 我发现用这个写媒体查询 ...
- 01-JavaScript之变量
这个系列的文章主要讲解JavaScript的常见用法,适合于初中级的前端开发人员,也可以对比TypeScript的系列文章来看. 先介绍JavaScript的变量与常见变量的函数,代码如下: //变量 ...
- OO第一次作业总结
OO第一次学习总结 1.第一次作业:多项式加法 从未接触过java的我,在从输入输出开始学了几天后,按照C语言的思路,写出了一个与面向过程极其接近的程序. 在这个程序中,存在两个类:一个是Comput ...
- Web Api 接收图片
public async Task<HttpResponseMessage> Upload() { if (!Request.Content.IsMimeMultipartContent( ...
- HTTP协议扫盲(二)HTTP协议的请求方法、请求头和响应头
一.HTTP请求方法 Http协议定义了很多与服务器交互的方法,最基本的有4种,分别是GET,POST,PUT,DELETE. 一个URL地址用于描述一个网络上的资源,而HTTP中的GET, POST ...
- 分享:纯 css 瀑布流 和 js 瀑布流
分享一次纯 css 瀑布流 和 js 瀑布流 纯 css 写瀑布流 1.multi-columns 方式: 通过 Multi-columns 相关的属性 column-count.column-ga ...
- 表单中各种input汇总
html表单 表单用于搜集不同类型的用户输入,表单由不同类型的标签组成,相关标签及属性用法如下: 1.<form>标签 定义整体的表单区域 action属性 定义表单数据提交地址 meth ...
- CentOS7 安装eclipse
1. 首先将eclipse的压缩包文件解压到/opt目录下,要使用root权限.执行如下解压命令:tar -zxvf eclipse-jee-oxygen-1a-linux-gtk-x86_64.ta ...