●Joyoi 收集邮票
题链:
http://www.joyoi.cn/problem/tyvj-2325
题解.1:
期望dp,(平方的期望不等于期望的平方。。。)
在这个题上坑了好久,也算是对期望的理解又深了一些。
很好的题解:http://www.cnblogs.com/ezyzy/p/6475861.html
再阐述一下平方的期望是在什么情况下可以递推的:
对于一个随机变量x,我们知道其每个取值的概率,
那么我们容易由定义得出这个随机变量的期望E(x)=p1*x1+p2*x2+...,
以及这个随机变量的平方的期望E(x²)=p1*x1²+p2*x2²+...。
现在由于种种原因,假设我们需要求出在这个随机变量的每个取值都加1但是概率不变的情况下的新的平方的期望E'(x²)=p1*(x1+1)²+p2*(x2+1)²+...,
(注意,只是权值改变,对应概率未变)
那么这个时候就可以用平方的期望的递推式子了:E'(x²)=E(x²)+2*E(x)+1反观这类题目的dp转移往往是分为当前状态成功与否两种情况,
而当我们确定了某种情况后,接下来就需要计算当前+后面的东西的总期望,再乘上这种情况的概率。
因为已确定了是成功还是失败,所以当前状态对期望的贡献只是在随机变量的取值上,而没有影响到其概率分布,所以才可以直接使用平方的期望的递推式子。
代码.1:
#include<bits/stdc++.h>
#define MAXN 10005
using namespace std;
double g[MAXN],f[MAXN];
int N;
int main(){
ios::sync_with_stdio(0);
cin>>N;
for(int i=N-1;i>=0;i--){
f[i]=f[i+1]+1.0*N/(N-i);
g[i]=1.0*i/N*(2*f[i]+1)+1.0*(N-i)/N*(g[i+1]+2*f[i+1]+1);
g[i]=g[i]/(N-i)*N;
}
cout<<fixed<<setprecision(2)<<(g[0]+f[0])/2<<endl;
return 0;
}
题解.2:
求期望。。。
正向枚举已经收集了i个,并计算收集第i个时的相关信息与贡献,
令a[i]表示收集了i个时期望购买了a次。
那么a[i+1]=a[i]+N/(N-i) (加上收集第i+1个时期望的购买次数)
然后要求收集第i+1个时期望的花费,
首先之前已经期望购买了a次,那么我们考虑:
首先一定要先买一次,价格为a+1
如果没买到(概率为i/N),再买一次,价格为a+2
如果还没买到(概率为(i/N)²),在买一次,价格为a+3
....(子子孙孙,无穷匮也。。。)
那么可以列出期望花费的式子:令p=i/N
A=(a+1)+(a+2)*p+(a+3)*p²+(a+4)*p³+.... [1]式
然后我们要求A的值,用错位相减法的得到,即:
A*p= (a+1)*p+(a+2)*p²+(a+3)*p³+.... [2]式
[1]式-[2]式:
(1-p)*A=a+1+p+p²+p³+...,是一个无穷项的等比数列
=a+1/(1-p)
所以得到A=(a+1/(1-p))/(1-p)
然后把A加进答案ans即可,(期望的线性可加性嘛,A即表示收集第i+1个所期望的花费)
代码.2:
#include<bits/stdc++.h>
#define MAXN 100005
using namespace std;
double p,a,ANS;
int N;
int main(){
ios::sync_with_stdio(0);
cin>>N;
for(int i=0;i<N;i++){
ANS+=(a+1.0*N/(N-i))/(1-1.0*i/N);
a+=1.0*N/(N-i);
}
cout<<fixed<<setprecision(2)<<ANS<<endl;
return 0;
}
●Joyoi 收集邮票的更多相关文章
- 【BZOJ-1426】收集邮票 概率与期望DP
1426: 收集邮票 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 261 Solved: 209[Submit][Status][Discuss] ...
- 【BZOJ1426】收集邮票 期望
[BZOJ1426]收集邮票 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的, ...
- P4550 收集邮票
P4550 收集邮票 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由 ...
- 收集邮票 (概率dp)
收集邮票 (概率dp) 题目描述 有 \(n\) 种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 \(n\) 种邮票中的哪一种是等概率 ...
- Bzoj1426 收集邮票
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 292 Solved: 232 Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一 ...
- 【bzoj1426】收集邮票
题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所 ...
- BZOJ 1426: 收集邮票 [DP 期望 平方]
传送门 题意: 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮 ...
- bzoj 1426:收集邮票 求平方的期望
显然如果收集了k天,ans=k*(k+1)/2=(k^2+k)/2.那么现在要求的就是这个东西的期望. 设f[i]表示已有i张邮票,收集到n张的期望次数,g[i]表示已有i张邮票,收集到n张的次数的平 ...
- P4550 收集邮票-洛谷luogu
传送门 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢 ...
随机推荐
- 1013团队alpha冲刺日志集合帖
alpha冲刺day1 alpha冲刺day2 alpha冲刺day3 alpha冲刺day4 alpha冲刺day5 alpha冲刺day6 alpha冲刺day7 alpha冲刺day8 alph ...
- 乘法表(24.9.2017) (WARNING!!!!!!!!!!!)
#include "stdio.h" main() { int i,j,result; printf("\n"); ;i<;i++) { ;j<;j ...
- C语言--第七周作业
一.求交错序列前N项和 1.代码 #include <stdio.h> int main() { int i=1,N; double j=0,sum=0; scanf("%d&q ...
- 标准C++类std::string的内存共享和Copy-On-Write(写时拷贝)
标准C++类std::string的内存共享,值得体会: 详见大牛:https://www.douban.com/group/topic/19621165/ 顾名思义,内存共享,就是两个乃至更多的对象 ...
- Spring Framework 的 Assert断言
知识共享才能传播,博采众家之长,才能推陈出新!-- 参考 https://www.cnblogs.com/hwaggLee/p/4778101.html 一.什么是 Assert(断言)? Web 应 ...
- LDAP是什么
LDAP的英文全称是Lightweight Directory Access Protocol,一般都简称为LDAP.LDAP目录服务是一种特殊的数据库系统,其专门针对读取,浏览和搜索操作进行了特定的 ...
- SQL Server 利用触发器对多表视图进行更新
其步骤就是:利用update操作触发器产生的2个虚拟表[inserted]用来存储修改的数据信息和[deleted]表,然后将对应的数据更新到对应数据表中的字段信息中: 1.首先创建3个表: a.信息 ...
- Django实现发邮件
1 首先去自己的邮箱申请,在设置里面找,申请开通smtp服务,我用的是163邮箱 2 在项目下settings.py中添加设置: # 配置邮箱发邮件的相关功能 #这一项是固定的 EMAIL_BACKE ...
- 前端插件之Bootstrap Switch 选择框开关控制
简介 Bootstrap Switch是一款轻量级插件,可以给选择框设置类似于开关的样式 它是依赖于Bootstrap的一款插件 下载 下载地址 在线引用 导入 因为它是依赖于Bootstrap的一款 ...
- hdu1728 逃离迷宫---转弯次数不超过k+BFS
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1728 题目大意: 给你一幅图,给出起点终点和最大转弯次数,判断是否能从起点到终点.'*'表示障碍物. ...