题目描述

把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃。现需要把每一杯水都烧开。我们可以对任意一杯水进行加热。把一杯水的温度升高t℃所需的能量为(4200*t/n)J,其中,“J”是能量单位“焦耳”。如果一旦某杯水的温度达到100℃,那么这杯水的温度就不能再继续升高,此时我们认为这杯水已经被烧开。显然地,如果直接把水一杯一杯地烧开,所需的总能量为(4200*100)J。

在烧水的过程中,我们随时可以在两杯温度不同的水之间进行热传递操作。热量只能从温度较高的那杯水传递到温度较低的那杯水。由于两杯水的质量相同,所以进行热传递操作之后,原来温度较高的那杯水所降低的温度总是等于原来温度较低的那杯水所升高的温度。

一旦两杯水的温度相同,热传递立刻停止。

为了把问题简化,我们假设:

1、没有进行加热或热传递操作时,水的温度不会变化。

2、加热时所花费的能量全部被水吸收,杯子不吸收能量。

3、热传递总是隔着杯子进行,n杯水永远不会互相混合。

4、热传递符合能量守恒,而且没有任何的热量损耗。

在这个问题里,只要求把每杯水都至少烧开一遍就可以了,而不要求最终每杯水的温度都是100℃。我们可以用如下操作把两杯水烧开:先把一杯水加热到100℃,花费能量(4200*100/2)J,然后两杯水进行热传递,直到它们的温度都变成50℃为止,最后把原来没有加热到100℃的那杯水加热到100℃,花费能量(4200*50/2)J,此时两杯水都被烧开过了,当前温度一杯100℃,一杯50℃,花费的总能量为(4200*75)J,比直接烧开所需的(4200*100)J少花费了25%的能量。

你的任务是设计一个最佳的操作方案使得n杯水都至少被烧开一遍所需的总能量最少。

输入输出格式

输入格式:

输入文件只有一个数n。

输出格式:

输出n杯水都至少被烧开一遍所需的最少的总能量,单位为J,四舍五入到小数点后两位。

输入输出样例

输入样例#1:

2
输出样例#1:

315000.00

说明

1≤n≤50000

首先可以肯定有一杯必须加热到100. 然后考虑剩下的, 尽量最大化热量的重复利用, 能分就分. 比如三杯, 最有策略是第一杯100, 分50, 此时50, 50, 然后加热第二杯, 变成50, 100. 如果最优的话就是先50分它25, 然后100和他分. 就是62.5. 就是先分热量小的. 让之后的大的有尽量多的机会, 就是最优策略.

推导:设沸腾温度为a

则第一杯温度为a,需要加热t1=a

第二杯可以中和的最高温度为a/2,需要加热t2=a/2

第三杯可以中和的最高温度为t3=(a/4+a)/2=5a/8,需要加热t3=3a/8

第四杯可以中和的最高温度为t4=((a/8+5a/8)/2+a)/2=11a/16,需要加热t4=5/16

则t3/t2=3/4=1-1/4, t4/t3=5/6=1-1/6

继续推导得t(n+1)/t(n)=1-1/2n

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
double now,ans,n;
int main()
{double i;
cin>>n;
now=/n;
for (i=;i<=n;i++)
{
ans+=now;
now*=(-0.5/i);
}
printf("%.2lf",ans); }

[SDOI2008]烧水问题的更多相关文章

  1. 洛谷P1984 SDOI2008烧水问题

    P1984 [SDOI2008]烧水问题 186通过 438提交 题目提供者lych 标签数论(数学相关)模拟各省省选 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 求助! 也是醉了... ...

  2. 洛谷 P1984 [SDOI2008]烧水问题 解题报告

    P1984 [SDOI2008]烧水问题 题目描述 把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃.现需要把每一杯水都烧开.我们可以对任意一杯水进行加热.把一杯 ...

  3. 洛谷 P1984 [SDOI2008]烧水问题

    洛谷 P1984 [SDOI2008]烧水问题 题目描述 把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃.现需要把每一杯水都烧开.我们可以对任意一杯水进行加热. ...

  4. 洛谷1984 [SDOI2008]烧水问题

    一道找规律 原题链接 显然要将烧得的温度最大化利用,即每次都去热传递. 设水沸腾为\(x\). 第一杯直接烧水,需提高\(x\). 第二杯先与第一杯进行热传递,这样只需提高\(\dfrac{x}{2} ...

  5. [SDOI2008]烧水问题 规律

    题目描述 把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃.现需要把每一杯水都烧开.我们可以对任意一杯水进行加热.把一杯水的温度升高t℃所需的能量为(4200*t ...

  6. P1984 [SDOI2008]烧水问题

    题目描述 把总质量为1kg的水分装在n个杯子里,每杯水的质量均为(1/n)kg,初始温度均为0℃.现需要把每一杯水都烧开.我们可以对任意一杯水进行加热.把一杯水的温度升高t℃所需的能量为(4200*t ...

  7. luogu1984 [SDOI2008] 烧水问题

    题目描述 给出水的比热容.冰点和沸点,问将$n$杯有$\frac{1}{n}\mathrm{kg}$的水从冰点加热到沸点所需最小热量.不一定相邻的两杯水间可以无热量损失地热传递至两者温度相同. 题解 ...

  8. P1984 [SDOI2008]烧水问题(具体证明)

    传送门 我见过的第二恶心的题,第一是糖果传递... 以下是一堆具体的证明,自己想的,可能考虑不周,不想看也可以直接看结论 首先有一个很显然的贪心,烧开的水要尽量把热量传递出去 所以有一个比较显然的方法 ...

  9. 洛谷 1984 [SDOI2008]烧水问题

    [题解] 烧开每一杯水之后都用它去把其他没烧开的水焐热,这样显然是最优的.然后推推式子或者列表找规律就好了. #include<cstdio> #include<algorithm& ...

随机推荐

  1. C语言--第三周作业

    一.PTA作业中4个题目 1.7-9 A乘以B 要求:输入的两个整数:A是你学号前两位数字,B是你学号后两位数字 a.代码 #include <stdio.h> int main () { ...

  2. Flask 蓝图(Blueprint)

    蓝图使用起来就像应用当中的子应用一样,可以有自己的模板,静态目录,有自己的视图函数和URL规则,蓝图之间互相不影响.但是它们又属于应用中,可以共享应用的配置.对于大型应用来说,我们可以通过添加蓝图来扩 ...

  3. JAVA_SE基础——63.String类的常用方法

    获取方法int length()  获取字符串的长度char charAt(int index) 获取特定位置的字符 (角标越界)int indexOf(String str) 查找子串第一次出现的索 ...

  4. 浏览器端类EXCEL表格插件 版本更新 - 智表ZCELL产品V1.1.0.1版本发布

    智表(ZCELL),浏览器下纯JS表格控件,为您提供EXCEL般的智能体验! 纯国产化.高性价比的可靠解决方案. 更新说明     让大家久等了.因为最近忙其他项目,发布时间稍有延迟.  下次版本更新 ...

  5. Django REST framework+Vue 打造生鲜超市(二)

    三.Models设计 3.1.项目初始化 (1)进虚拟环境下安装 django2.0.2 djangorestframework和相关依赖mark,filter pillow  图片处理 pip in ...

  6. Linq 集合操作符 Except,Intersect,Union

    IList<string> s1 = new List<string>() { "One", "Two", "Three&qu ...

  7. 解决IE8下opacity属性失效问题

    由于opacity属性存在兼容性问题,所以在IE8下,用opacity来设置元素的透明度,会失效,从而导致页面的样式问题. 在IE8及其更早的浏览器下,我们可以使用filter属性,来代替opacit ...

  8. Python内置函数(59)——open

    英文文档: open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, ope ...

  9. 新概念英语(1-107)It's Too Small.

    Lesson 107 It's too small. 太小了. Listen to the tape then answer this question. What kind of dress doe ...

  10. 2018年Web前端自学路线

    本文最初发表于博客园,并在GitHub上持续更新前端的系列文章.欢迎在GitHub上关注我,一起入门和进阶前端. 以下是正文. Web前端入门的自学路线 新手入门前端,需要学习的基础内容有很多,如下. ...