For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1.

Now given a string representing n, you should return the smallest good base of n in string format.

Example 1:

Input: "13"
Output: "3"
Explanation: 13 base 3 is 111.

Example 2:

Input: "4681"
Output: "8"
Explanation: 4681 base 8 is 11111.

Example 3:

Input: "1000000000000000000"
Output: "999999999999999999"
Explanation: 1000000000000000000 base 999999999999999999 is 11.

Note:

  1. The range of n is [3, 10^18].
  2. The string representing n is always valid and will not have leading zeros.

这道题让我们求最小的好基数,定义了一个大于等于2的基数k,如果可以把数字n转化为各位都是1的数,那么就称这个基数k是好基数。通过看题目中的三个例子,应该大致可以理解题意了吧。如果我们用k表示基数,m表示转为全1数字的位数,那么数字n就可以拆分为:

n = 1 + k + k^2 + k^3 + ... + k^(m-1)

这是一个等比数列,中学数学的内容吧,利用求和公式可以表示为 n = (k^m - 1) / (k - 1)。我们的目标是求最小的k,那么仔细观察这个式子,在n恒定的情况,k越小则m却大,就是说上面的等式越长越好。下面我们来分析m的取值范围,题目中给了n的范围,是 [3, 10^18]。由于k至少为2,n至少为3,那么肯定至少有两项,则 m>=2。再来看m的上限该如何求?其实也不难,想要m最大,k就要最小,k最小是2,那么m最大只能为 log2(n + 1),数字n用二进制表示的时候可拆分出的项最多。但这道题要求变换后的数各位都是1,那么我们看题目中最后一个例子,可以发现,当 k=n-1 时,一定能变成 11,所以实在找不到更小的情况下就返回 n-1。

下面我们来确定k的范围,由于k至少为2,那么就可以根据下面这个不等式来求k的上限:

n = 1 + k + k^2 + k^3 + ... + k^(m-1) > k^(m-1)

解出 k < n^(1 / (m-1)),其实我们也可以可以通过 n < k^m - 1 来求出k的准确的下限,但由于是二分查找法,下限直接使用2也没啥问题。分析到这里,那么解法应该已经跃然纸上了,我们遍历所有可能的m值,然后利用二分查找法来确定k的值,对每一个k值,我们通过联合m值算出总和 sum,然后跟n来对比即可,参见代码如下:

class Solution {
public:
string smallestGoodBase(string n) {
long long num = stol(n);
for (int i = log(num + ) / log(); i >= ; --i) {
long long left = , right = pow(num, 1.0 / (i - )) + ;
while (left < right) {
long long mid = left + (right - left) / , sum = ;
for (int j = ; j < i; ++j) {
sum = sum * mid + ;
}
if (sum == num) return to_string(mid);
if (sum < num) left = mid + ;
else right = mid;
}
}
return to_string(num - );
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/483

参考资料:

https://leetcode.com/problems/smallest-good-base/

https://leetcode.com/problems/smallest-good-base/discuss/96591/Java-O((logn)2)-binary-search-solution

https://leetcode.com/problems/smallest-good-base/discuss/96593/Concise-C%2B%2B-Binary-Search-solution

https://leetcode.com/problems/smallest-good-base/discuss/96590/3ms-AC-C%2B%2B-long-long-int-%2B-binary-search

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Smallest Good Base 最小的好基数的更多相关文章

  1. [LeetCode] 483. Smallest Good Base 最小的好基数

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  2. [Swift]LeetCode483. 最小好进制 | Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  3. Leetcode 483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  4. 483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  5. Binary Search-483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  6. [LeetCode] Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  7. [LeetCode] Smallest Range 最小的范围

    You have k lists of sorted integers in ascending order. Find the smallest range that includes at lea ...

  8. [LeetCode] 910. Smallest Range II 最小区间之二

    Given an array A of integers, for each integer A[i] we need to choose either x = -K or x = K, and ad ...

  9. [LeetCode] 908. Smallest Range I 最小区间

    Given an array A of integers, for each integer A[i] we may choose any x with -K <= x <= K, and ...

随机推荐

  1. Python中的PYTHONPATH环境变量

    PYTHONPATH是Python中一个重要的环境变量,用于在导入模块的时候搜索路径.可以通过如下方式访问: >>> import sys >>> sys.path ...

  2. Python+reuqests自动化接口测试

    1.最近自己在摸索Python+reuqests自动化接口测试,要实现某个功能,首先自己得有清晰的逻辑思路!这样效率才会很快! 思路--1.通过python读取Excel中的接口用例,2.通过pyth ...

  3. Beta Scrum Day 2

    听说

  4. alpha-咸鱼冲刺day5

    一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 !!!QAQ可以做到跟数据库交互了!!!!先来撒花花!(然后继续甲板) 四,问题困难 日常啥都不会,百度真心玩一年. 还得自学n ...

  5. android 广播安装指定下载的apk

    // 广播出去,由广播接收器来处理下载完成的文件   Intent sendIntent = new Intent("com.test.downloadComplete");    ...

  6. Flask 学习 九 用户资料

    资料信息 app/models.py class User(UserMixin,db.Model): #...... name = db.Column(db.String(64)) location ...

  7. tornado web高级开发项目

    抽屉官网:http://dig.chouti.com/ 一.配置(settings) settings = { 'template_path': 'views', #模板文件路径 'static_pa ...

  8. HTTP协议中PUT和POST使用区别

          有的观点认为,应该用POST来创建一个资源,用PUT来更新一个资源:有的观点认为,应该用PUT来创建一个资源,用POST来更新一个资源:还有的观点认为可以用PUT和POST中任何一个来做创 ...

  9. 关于Java的异常

    异常机制概述 异常机制是指当程序出现错误后,程序如何处理.具体来说,异常机制提供了程序退出的安全通道.当出现错误后,程序执行的流程发生改变,程序的控制权转移到异常处理器. 异常处理的流程 当程序中抛出 ...

  10. .NET Core装饰模式和.NET Core的Stream

    该文章综合了几本书的内容. 某咖啡店项目的解决方案 某咖啡店供应咖啡, 客户买咖啡的时候可以添加若干调味料, 最后要求算出总价钱. Beverage是所有咖啡饮料的抽象类, 里面的cost方法是抽象的 ...