Vladik and cards
2 seconds
256 megabytes
standard input
standard output
Vladik was bored on his way home and decided to play the following game. He took n cards and put them in a row in front of himself. Every card has a positive integer number not exceeding 8 written on it. He decided to find the longest subsequence of cards which satisfies the following conditions:
- the number of occurrences of each number from 1 to 8 in the subsequence doesn't differ by more then 1 from the number of occurrences of any other number. Formally, if there are ck cards with number k on them in the subsequence, than for all pairs of integers
the condition |ci - cj| ≤ 1 must hold. - if there is at least one card with number x on it in the subsequence, then all cards with number x in this subsequence must form a continuous segment in it (but not necessarily a continuous segment in the original sequence). For example, the subsequence[1, 1, 2, 2] satisfies this condition while the subsequence [1, 2, 2, 1] doesn't. Note that [1, 1, 2, 2] doesn't satisfy the first condition.
Please help Vladik to find the length of the longest subsequence that satisfies both conditions.
The first line contains single integer n (1 ≤ n ≤ 1000) — the number of cards in Vladik's sequence.
The second line contains the sequence of n positive integers not exceeding 8 — the description of Vladik's sequence.
Print single integer — the length of the longest subsequence of Vladik's sequence that satisfies both conditions.
3
1 1 1
1
8
8 7 6 5 4 3 2 1
8
24
1 8 1 2 8 2 3 8 3 4 8 4 5 8 5 6 8 6 7 8 7 8 8 8
17
In the first sample all the numbers written on the cards are equal, so you can't take more than one card, otherwise you'll violate the first condition.
分析:状压dp;
dp[i][j]表示到i为止j里面二进制1表示这个位置的数是否用过的取len+1的个数的最大值;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
#define intxt freopen("in.txt","r",stdin)
const int maxn=1e3+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline void umax(int&p,int q){if(p<q)p=q;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,pos[][maxn],dp[maxn][<<],cur[],a[maxn],ans;
bool ok(int len)
{
memset(dp,-inf,sizeof(dp));
memset(cur,,sizeof(cur));
dp[][]=;
bool flag=false;
for(int i=;i<=n;i++)
{
for(int j=;j<(<<);j++)
{
if(dp[i][j]==-inf)continue;
for(int k=;k<=;k++)
{
if(j&(<<(k-)))continue;
if(cur[k]+len>pos[k][])continue;
int now_pos=pos[k][cur[k]+len];
umax(dp[now_pos][j|(<<(k-))],dp[i][j]);
if(cur[k]+len+>pos[k][])continue;
now_pos=pos[k][cur[k]+len+];
umax(dp[now_pos][j|(<<(k-))],dp[i][j]+);
}
}
cur[a[i]]++;
}
for(int i=;i<=n+;i++)
{
if(dp[i][(<<)-]>=)
{
flag=true;
ans=max(ans,dp[i][(<<)-]*(len+)+(-dp[i][(<<)-])*len);
}
}
return flag;
}
int main()
{
int i,j;
scanf("%d",&n);
rep(i,,n)a[i]=read();
rep(i,,n)
{
pos[a[i]][++pos[a[i]][]]=i;
}
rep(i,,)if(pos[i][])ans++;
int l=,r=n/;
while(l<=r)
{
int mid=l+r>>;
if(ok(mid))l=mid+;
else r=mid-;
}
printf("%d\n",ans);
//system("Pause");
return ;
}
Vladik and cards的更多相关文章
- Codeforces Round #384 (Div. 2) 734E Vladik and cards
E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #384 (Div. 2) E. Vladik and cards 状压dp
E. Vladik and cards 题目链接 http://codeforces.com/contest/743/problem/E 题面 Vladik was bored on his way ...
- [codeforces743E]Vladik and cards
E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- CF384 div2 E. Vladik and cards
题意 给你一个的排列,求一个满足条件的最长子序列 每种数字的差小于等于,并且每种数字之内是连续的 解法 首先单纯认为用肯定不行的 所以应该考虑二分答案(所求长度具有二分性) 再用dp判断是否可行,这个 ...
- Vladik and cards CodeForces - 743E (状压)
大意: 给定序列, 求选出一个最长的子序列, 使得任选两个[1,8]的数字, 在子序列中的出现次数差不超过1, 且子序列中相同数字连续. 正解是状压dp, 先二分转为判断[1,8]出现次数>=x ...
- CodeForces743E. Vladik and cards 二分+状压dp
这个题我们可以想象成_---___-----__的一个水柱它具有一遍优一遍行的性质因此可以用来二分最小值len,而每次二分后我们都要验根,we可以把这个水柱想成我们在每个数段里取前一段的那个数后一段有 ...
- 【codeforces 743E】Vladik and cards
[题目链接]:http://codeforces.com/problemset/problem/743/E [题意] 给你n个数字; 这些数字都是1到8范围内的整数; 然后让你从中选出一个最长的子列; ...
- Codeforces Round #384 (Div. 2) //复习状压... 罚时爆炸 BOOM _DONE
不想欠题了..... 多打打CF才知道自己智商不足啊... A. Vladik and flights 给你一个01串 相同之间随便飞 没有费用 不同的飞需要费用为 abs i-j 真是题意杀啊, ...
- 「算法笔记」状压 DP
一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...
随机推荐
- 一步一步深入spring(5)--使用基于注解的spring实现 AOP
1.要利用spring aop,至少需要添加以下jar包 使用spring需要的jarspring.jar .commons-logging.jar 使用切面编程(AOP)需要的jar aspectj ...
- Go - Revel框架介绍
Go - Revel框架介绍 https://github.com/robfig/revel http://robfig.github.io/revel/ web框架:revel 数据库:mongod ...
- sql连接查询 2011-10-10 23:13 (QQ空间)
在关系数据库管理系统中,表建立时各数据之间的关系不必确定,常把一个实体的所有信息存放在一个表中,通过连接运算符可以实现多个表查询.连接是关系数据库模型的主要特点,也是它区别于其它类型数据库管理系统的一 ...
- javascript操作写入txt文件及消息: Automation 服务器不能创建对象问题
简单的写入txt代码: function WriteTxt() { var fso, tf; fso = new ActiveXObject("Scripting.Fil ...
- andoid x项目的优化 1
通常我们写程序,都是在项目计划的压力下完成的,此时完成的代码可以完成具体业务逻辑,但是性能不一定是最优化的,一般来说,一般来说,优秀的程序员在写完代码之后都会不断的对代码进行重构.重构的好处有很多,其 ...
- 在html页面中展示JSON
背景: 有时候我们需要将json数据直接显示在页面上(比如在做一个接口测试的项目,需要将接口返回的结果直接展示),但是如果直接显示字符串,不方便查看.需要格式化一下. 解决方案: 其实JSON.str ...
- CSS3样式linear-gradient的使用
linear-gradient linear-gradient是CSS3中新增的样式,主要用于颜色的渐变效果.MDN地址 linear-gradient在不同内核下使用方式不同,详细内容可参考w3cp ...
- Web开发必回知识点
Web前端必须知道 一.常用那几种浏览器测试?有哪些内核(Layout Engine)? 1.浏览器:IE,Chrome,FireFox,Safari,Opera. 2.内核:Trident,Geck ...
- Tomcat v7.0 Server at localhost are already in use,tomcat提示端口被占用,tomcat端口已经被使用,tomcat端口占用
Tomcat v7.0 Server at localhost are already in use, tomcat提示端口被占用,tomcat端口已经被使用 >>>>> ...
- [ios2][转]iOS摇动检测 (UIAccelerometer)
加速计(UIAccelerometer)是一个单例模式的类,所以需要通过方法sharedAccelerometer获取其唯一的实例. 加速计需要设置的主要有两个: 一个是设置其代理,用以执行获取加速计 ...