用python计算lda语言模型的困惑度并作图
转载请注明:电子科技大学EClab——落叶花开http://www.cnblogs.com/nlp-yekai/p/3816532.html
困惑度一般在自然语言处理中用来衡量训练出的语言模型的好坏。在用LDA做主题和词聚类时,原作者D.Blei就是采用了困惑度来确定主题数量。文章中的公式为:
perplexity=exp^{ - (∑log(p(w))) / (N) }
其中,P(W)是指的测试集中出现的每一个词的概率,具体到LDA的模型中就是P(w)=∑z p(z|d)*p(w|z)【z,d分别指训练过的主题和测试集的各篇文档】。分母的N是测试集中出现的所有词,或者说是测试集的总长度,不排重。
因而python程序代码块需要包括几个方面:
1.对训练的LDA模型,将Topic-word分布文档转换成字典,方便查询概率,即计算perplexity的分子
2.统计测试集长度,即计算perplexity的分母
3.计算困惑度
4.对于不同的Topic数量的模型,计算的困惑度,画折线图。
python代码如下:
# -*- coding: UTF-8-*-
import numpy
import math
import string
import matplotlib.pyplot as plt
import re def dictionary_found(wordlist): #对模型训练出来的词转换成一个词为KEY,概率为值的字典。
word_dictionary1={}
for i in xrange(len(wordlist)):
if i%2==0:
if word_dictionary1.has_key(wordlist[i])==True:
word_probability=word_dictionary1.get(wordlist[i])
word_probability=float(word_probability)+float(wordlist[i+1])
word_dictionary1.update({wordlist[i]:word_probability})
else:
word_dictionary1.update({wordlist[i]:wordlist[i+1]})
else:
pass
return word_dictionary1 def look_into_dic(dictionary,testset): #对于测试集的每一个词,在字典中查找其概率。
'''Calculates the TF-list for perplexity'''
frequency=[]
letter_list=[]
a=0.0
for letter in testset.split():
if letter not in letter_list:
letter_list.append(letter)
letter_frequency=(dictionary.get(letter))
frequency.append(letter_frequency)
else:
pass
for each in frequency:
if each!=None:
a+=float(each)
else:
pass
return a def f_testset_word_count(testset): #测试集的词数统计
'''reture the sum of words in testset which is the denominator of the formula of Perplexity'''
testset_clean=testset.split()
return (len(testset_clean)-testset.count("\n")) def f_perplexity(word_frequency,word_count): #计算困惑度
'''Search the probability of each word in dictionary
Calculates the perplexity of the LDA model for every parameter T'''
duishu=-math.log(word_frequency)
kuohaoli=duishu/word_count
perplexity=math.exp(kuohaoli)
return perplexity def graph_draw(topic,perplexity): #做主题数与困惑度的折线图
x=topic
y=perplexity
plt.plot(x,y,color="red",linewidth=2)
plt.xlabel("Number of Topic")
plt.ylabel("Perplexity")
plt.show() topic=[]
perplexity_list=[]
f1=open('/home/alber/lda/GibbsLDA/jd/test.txt','r') #测试集目录
testset=f1.read()
testset_word_count=f_testset_word_count(testset) #call the function to count the sum-words in testset
for i in xrange(14):
dictionary={}
topic.append(5*(3i+1)) #模型文件名的迭代公式
trace="/home/alber/lda/GibbsLDA/jd/stats/model-final-"+str(5*(i+1))+".txt" #模型目录
f=open(trace,'r')
text=f.readlines()
word_list=[]
for line in text:
if "Topic" not in line:
line_clean=line.split()
word_list.extend(line_clean)
else:
pass
word_dictionary=dictionary_found(word_list)
frequency=look_into_dic(word_dictionary,testset)
perplexity=f_perplexity(frequency,testset_word_count)
perplexity_list.append(perplexity)
graph_draw(topic,perplexity_list)
下面是画出的折线图,在拐点附近再调整参数(当然与测试集有关,有图为证~~),寻找最优的主题数。实验证明,只要Topic选取数量在其附近,主题抽取一般比较理想。
本人也是新手开始作研究~程序或者其他地方有错误的,希望大家指正。
用python计算lda语言模型的困惑度并作图的更多相关文章
- LDA主题模型困惑度计算
对于LDA模型,最常用的两个评价方法困惑度(Perplexity).相似度(Corre). 其中困惑度可以理解为对于一篇文章d,所训练出来的模型对文档d属于哪个主题有多不确定,这个不确定成都就是困惑度 ...
- 计算LDA模型困惑度
http://www.52nlp.cn/lda-math-lda-%E6%96%87%E6%9C%AC%E5%BB%BA%E6%A8%A1 LDA主题模型评估方法--Perplexity http:/ ...
- 【NLP】Python实例:基于文本相似度对申报项目进行查重设计
Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起 ...
- python计算不规则图形面积算法
介绍:大三上做一个医学影像识别的项目,医生在原图上用红笔标记病灶点,通过记录红色的坐标位置可以得到病灶点的外接矩形,但是后续会涉及到红圈内的面积在外接矩形下的占比问题,有些外接矩形内有多个红色标记,在 ...
- [转载] python 计算字符串长度
本文转载自: http://www.sharejs.com/codes/python/4843 python 计算字符串长度,一个中文算两个字符,先转换成utf8,然后通过计算utf8的长度和len函 ...
- Python计算斗牛游戏的概率
Python计算斗牛游戏的概率 过年回家,都会约上亲朋好友聚聚会,会上经常会打麻将,斗地主,斗牛.在这些游戏中,斗牛是最受欢迎的,因为可以很多人一起玩,而且没有技术含量,都是看运气(专业术语是概率). ...
- 利用Python计算π的值,并显示进度条
利用Python计算π的值,并显示进度条 第一步:下载tqdm 第二步;编写代码 from math import * from tqdm import tqdm from time import ...
- 用Python计算幂的两种方法,非递归和递归法
用Python计算幂的两种方法: #coding:utf-8 #计算幂的两种方法.py #1.常规方法利用函数 #不使用递归计算幂的方法 """ def power(x, ...
- Python计算分位数
Python计算分位数 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/gdkyxy2013/article/details/80911514 ...
随机推荐
- php中的$_GET怎样获取带有井号“#”的參数
<?php echo $_GET['key']; ?> 当url为http://test.com/c.php?key=999时,正常输出:999 当url为http://test.com/ ...
- [翻译]初识SQL Server 2005 Reporting Services Part 2
原文:[翻译]初识SQL Server 2005 Reporting Services Part 2 在Part 1文章中我们对SQL Server Reporting Services 2005(S ...
- .Net中批量更新或添加数据
方法一:使用SqlBulkCopy实现批量更新或添加数据. SqlBulkCopy类一般只能用来将数据批量插入打数据库中,如果数据表中设置了主键,出现重复数据的话会报错,如果没有设置主键,那么将会添加 ...
- 一行代码解决各种IE兼容问题,IE6,IE7,IE8,IE9,IE10(转载)
在网站开发中不免因为各种兼容问题苦恼,针对兼容问题,其实IE给出了解决方案Google也给出了解决方案百度也应用了这种方案去解决IE的兼容问题 百度源代码如下 <!Doctype html> ...
- document对象属性documentMode与CompatMode
DOCTYPE DOCTYPE全称Document Type Declaration(文档类型声明,缩写DTD) DTD的声明影响浏览器对于CSS代码及Javascript脚本的解析. 渲染模式 渲染 ...
- 后台XML处理
public void GetInfo() { string message = @"<?xml version='1.0' encoding='utf-8' ...
- C语言中数据类型的长度
面试中C里面int长度经常会被问到,下面总结一下作为资料: 首先看看一般规定: 标准c规定,int长度等于机器字长,short的表示范围不能大于int的表示范围,long的表示范围不能小于int的表示 ...
- 记录Spring.net学习中遇到的各种问题
1.由于项目中使用了spring.net作为IOC容器,所以看了下相应的博客,熟悉一下这方面的内容,参照博客为博客园刘冬的博客系列: 博客地址:http://www.cnblogs.com/GoodH ...
- Windows7和Archlinux双系统硬盘安装笔记
俗话说,好记性不如烂笔头,这些东西也都是我Google来的,做个笔记以后自己安装也方便些. 因为官方wiki的Beginners' Guide讲的非常好,大部分步骤按照wiki一步一步来就好了,这里只 ...
- 【Yom框架】漫谈个人框架的设计之一:是IRepository还是IRepository<T>?
前言 ...