图的深度优先搜索:

1.将最初访问的顶点压入栈;

2.只要栈中仍有顶点,就循环进行下述操作:

(1)访问栈顶部的顶点u;

(2)从当前访问的顶点u 移动至顶点v 时,将v 压入栈。如果当前顶点u 不存在未访问的相邻矩阵,则将u 从栈中删除;

主要的几个变量:

color[n] 用WHITE、GRAY、BLACK 中的一个来表示顶点i 的访问状态
M[n][n] 邻接矩阵, 如果存在顶点i 到顶点j 的边,则M[i][j]为true
Stack S

栈, 暂存访问过程中的顶点

其中color 数组中, 白色代表“未访问的顶点”, 灰色代表“访问过的顶点”(虽然被访问过了,但仍然可能留有通往未访问顶点的边), 黑色代表”访问结束的顶点”;

有俩种方法实现深度优先遍历

(1)用递归实现的深度优先搜索

#include<stdio.h>

#define N 100
#define WHITE 0
#define GRAY 1
#define BLACK 2 int n, M[N][N];
int color[N], d[N], f[N], tt;//color[n]表示该顶点访问与否,d[n]表示该顶点的发现时刻 ,f[n]表示该顶点的结束时刻 ,tt表示时间 //用递归函数实现的深度优先搜索
void dfs_visit(int u) {
int v;
color[u] = GRAY;
d[u] = ++tt;
for(v = ; v < n; v++) {
if(M[u][v] == ) continue;
if(color[v] == WHITE)
dfs_visit(v);
}
color[u] = BLACK;
f[u] = ++tt;//访问结束
} void dfs() {
int u;
//初始化
for(u = ; u < n; u++) color[u] = WHITE;
tt = ; //以未访问的u为起点进行深度优先搜索
for(u = ; u < n; u++) {
if(color[u] == WHITE)
dfs_visit(u);
} //输出
for(u = ; u < n; u++) {
printf("%d %d %d\n", u+, d[u], f[u]);
}
} int main() {
int u, v, k, i, j; scanf("%d", &n);
//初始化
for(i = ; i < n; i++) {
for(j = ; j < n; j++) {
M[i][j] = ;
}
}
//输入数据,构造邻接矩阵
for(i = ; i < n; i++) {
scanf("%d %d", &u, &k);
u--;
for(j = ; j < k; j++) {
scanf("%d", &v);
v--;
M[u][v] = ;
}
} dfs(); return ;
} /*
6
1 2 2 3
2 2 3 4
3 1 5
4 1 6
5 1 6
6 0
*/

(2)用栈实现的深度优先搜索

#include<iostream>
#include<stack>
using namespace std; static const int N = ;
static const int WHITE = ;
static const int GRAY = ;
static const int BLACK = ; int n, M[N][N];
int color[N], d[N], f[N], tt;//color[n]表示该顶点访问与否,d[n]表示该顶点的发现时刻 ,f[n]表示该顶点的结束时刻
int nt[N];//记录每个顶点的邻接顶点偏移量,eg:顶点0有俩个顶点1,2;现已经访问过1了,那么, nt[u] = 1; 下次直接访问2 //按编号顺序获取与u相邻的v
int next(int u) {
for(int v = nt[u]; v < n; v++) {
nt[u] = v + ;
if(M[u][v]) return v;
}
return -;
} void dfs_visit(int r) {
for(int i = ; i < n; i++) nt[i] = ; stack <int> S;
S.push(r);
color[r] = GRAY;
d[r] = ++tt; while( !S.empty() ) {
int u = S.top();
int v = next(u);
if(v != -) {
if(color[v] == WHITE) {
color[v] = GRAY;
d[v] = ++tt;
S.push(v);
}
}
else {
S.pop();
color[u] = BLACK;
f[u] = ++tt;
}
}
} void dfs() {
//初始化
for( int i = ; i < n; i++) {
color[i] = WHITE;
nt[i] = ;
}
//设置时间
tt = ; //以未访问的u为起点进行深度优先搜索,设置循环的目的应该是防止该图不是连通图
for(int u = ; u < n; u++) {
if(color[u] == WHITE) dfs_visit(u);
} for(int i = ; i < n; i++) {
cout << i+ << " " << d[i] << " " << f[i] << endl;
}
} int main() {
int u, k, v;
cin >> n; //顶点数 //邻接矩阵置零
for( int i = ; i < n; i++) {
for(int j = ; j < n; j++)
M[i][j] = ;
} //创建邻接矩阵
for(int i = ; i < n; i++) {
cin >> u >> k;//输入顶点和顶点的度
u--;
for(int j = ; j < k; j++) {
cin >> v;
v--;
M[u][v] = ;
}
} dfs(); return ;
} /*
6
1 2 2 3
2 2 3 4
3 1 5
4 1 6
5 1 6
6 0
*/

图的深度优先搜索dfs的更多相关文章

  1. 图的深度优先搜索(DFS)和广度优先搜索(BFS)算法

    深度优先(DFS) 深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接 ...

  2. 【算法导论】图的深度优先搜索遍历(DFS)

    关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS). 深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点, ...

  3. 图的深度优先搜索算法DFS

    1.问题描写叙述与理解 深度优先搜索(Depth First Search.DFS)所遵循的策略.如同其名称所云.是在图中尽可能"更深"地进行搜索. 在深度优先搜索中,对最新发现的 ...

  4. 深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)

    深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历.图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图 ...

  5. DS图遍历--深度优先搜索

    DS图遍历--深度优先搜索 题目描述 给出一个图的邻接矩阵,对图进行深度优先搜索,从顶点0开始 注意:图n个顶点编号从0到n-1 代码框架如下: 输入 第一行输入t,表示有t个测试实例 第二行输入n, ...

  6. 深度优先搜索DFS和广度优先搜索BFS简单解析

    转自:https://www.cnblogs.com/FZfangzheng/p/8529132.html 深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每 ...

  7. 【算法入门】深度优先搜索(DFS)

    深度优先搜索(DFS) [算法入门] 1.前言深度优先搜索(缩写DFS)有点类似广度优先搜索,也是对一个连通图进行遍历的算法.它的思想是从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解 ...

  8. 深度优先搜索 DFS 学习笔记

    深度优先搜索 学习笔记 引入 深度优先搜索 DFS 是图论中最基础,最重要的算法之一.DFS 是一种盲目搜寻法,也就是在每个点 \(u\) 上,任选一条边 DFS,直到回溯到 \(u\) 时才选择别的 ...

  9. 利用广度优先搜索(BFS)与深度优先搜索(DFS)实现岛屿个数的问题(java)

    需要说明一点,要成功运行本贴代码,需要重新复制我第一篇随笔<简单的循环队列>代码(版本有更新). 进入今天的主题. 今天这篇文章主要探讨广度优先搜索(BFS)结合队列和深度优先搜索(DFS ...

随机推荐

  1. 微信小程序学习 动手撸一个校园网小程序

    动手撸一个校园网微信小程序 高考完毕,想必广大学子和家长们都在忙着查询各所高校的信息,刚好上手微信小程序,当练手也当为自己的学校做点宣传,便当即撸了一个校园网微信小程序. 效果预览 源码地址:Gith ...

  2. 微信小程序最新授权方法,getUserInfo

    20180511微信小程序正式关闭原先getUserInfo的逻辑 不再允许自动弹出授权框. 方法一: index.wxml(准备一个用于给用户授权的页面,我这里直接用了一个全屏按钮) <vie ...

  3. 用jQuery怎么做到前后端分离

    传统的web开发模式想必大家都知道,不管是jsp.asp.php或者一些魔板引擎开发,其实道理都是一样的,都是服务端渲染,原理是:浏览器发送一个get请求,服务器对应的返回前端一个html页面,由浏览 ...

  4. 用mpvue写个玩意儿玩玩

    下周公司要搞黑客马拉松了,组里可能会做个小程序.然后看到了mpvue感觉还不错,于是就打算试试水.用vue写小程序听上去美滋滋.那么先开始吧! 全局安装 vue-cli $ npm install - ...

  5. 【DPDK】谈谈DPDK如何实现bypass内核的原理 其一 PCI设备与UIO驱动

    [前言] 随着网络的高速发展,对网络的性能要求也越来越高,DPDK框架是目前的一种加速网络IO的解决方案之一,也是最为流行的一套方案.DPDK通过bypass内核协议栈与内核驱动,将驱动的工作从内核态 ...

  6. 单页面和多页面的网页差别比较(SPA)

      单页面应用(singlePAge Web Application) 多页面应用MultiPage Applicaton,MPA) 组成 一个外壳页面和多个页面片段组成 多个完整的页面组成 资源公用 ...

  7. seo搜索优化教程11-seo搜索优化关键词策略

    为了使大家更方便的了解及学习网络营销推广.seo搜索优化,星辉科技强势推出seo搜索优化教程.此为seo教程第11课 关键词在seo搜索优化中有着重要的地位,本节主要讲解seo搜索优化中关键词优化的相 ...

  8. 音频相关 ALSA ffmpeg ffplay 命令用法 g7xx

    采样率: samples 441100 每秒 DAC/ADC 采样的频率,声卡一般还支持 48k 8k 等模式. 通道:channels 2声道 左右声道 也有单声道的声音,5.1 声道 位数: 16 ...

  9. C++ 回调函数,拷贝文件

    #include <iostream> #include <windows.h> using namespace std; unsigned long long transla ...

  10. BrowserSync(前端利器—保存代码后,自动刷新浏览器)

    摘要 Browsersync能让浏览器实时.快速响应您的文件更改(HTML.JavaScript.CSS.Sass.Less.PHP.Python等)并自动刷新页面.更重要的是 Browsersync ...