问题描述:m个旅行商去旅游 n个城市,规定都必须从同一个出发点出发,而且返回原出发点,需要将所有的城市遍历完毕,每个城市只能游历一次,但是为了路径最短可以路过这个城市多次。这个就是多旅行商问题。是在TSP问题的基础上进行了扩展。

问题解决方案:

明确M-TSP与TSP的区别在哪里?

  TSP指的是单个旅行商遍历一圈,将所有城市旅行一遍,

   MTSP指的是将城市群划分成M个组,每组采用TSP得到最短的旅行路线,所以问题的关键在于如何确定城市群的分组

改良圈算法——可得到优化解但不是最优解

先得到一个哈密顿圈,然后修改权值路径,得到新的哈密顿圈,如果新的哈密顿圈路径权值小于初始的圈,就替换掉原来的圈,直到路径权值最小。

用于得到一个较好的初始化种群;然后用到遗传算法中

代码:

clear,clc
load sj.txt;
x=sj(:,1:2:8);x=x(:);%将25*4矩阵变为100*1矩阵
y=sj(:,2:2:8);y=y(:);
sj=[x,y];
d1=[70,40];%初始起飞基地
sj0=[d1;sj;d1];%102个基地
%计算距离矩阵d
sj=sj0*pi/180;
d=zeros(102);
for i=1:101
for j=i+1:102
temp=cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2));
d(i,j)=6370*acos(temp);
end
end
d=d+d';%对称矩阵
L=102;w=50;dai=100;
%通过改良圈算法选取优良父代A
for k=1:w
c=randperm(100);%把1到100这些数随机打乱得到的一个数字序列
c1=[1,c+1,102];%染色体
flag=1;
while flag>0
flag=0;
for m=1:L-3
for n=m+2:L-1
if(d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<d(c1(m),c1(m+1))+d(c1(n),c1(n+1)))
flag=1;
c1(m+1:n)=c1(n:-1:m+1);
end
end
end
end
J(k,c1)=1:102;
end
J=J/102;
J(:,1)=0;J(:,102)=1;
rand('state',sum(clock));
%遗传算法实现过程
A=J;
for k=1:dai %产生 0~1 间随机数列进行编码
%交配产生子代 B
B=A;
c=randperm(w); %产生1~50随机数
for i=1:2:w %从1到50依次两两配对,即i与(i+1)配对
F=2+floor(100*rand(1)); %随机产生交叉点
temp=B(c(i),F:102);
B(c(i),F:102)=B(c(i+1),F:102);
B(c(i+1),F:102)=temp; %交叉更换完毕
end
%变异产生子代 C
by=find(rand(1,w)<0.1); %返回随机数<0.1的位置
if length(by)==0 %如果上一步找不到,则随机产生一个变异点
by=floor(w*rand(1))+1;
end
C=A(by,:);
L3=length(by);
for j=1:L3
bw=2+floor(100*rand(1,3)); %随机选取三个整数
bw=sort(bw); %满足1<u<v<w<102
C(j,:)=C(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]); %把u,v之间(包括u和v)的基因段插到w后面
end
G=[A;B;C]; %获得父代、交叉子代、变异子代合集G
%在父代和子代中选择优良品种作为新的父代
TL=size(G,1);
[dd,IX]=sort(G,2);%dd为升序后的G,IX为索引
temp(1:TL)=0;
for j=1:TL
for i=1:101
temp(j)=temp(j)+d(IX(j,i),IX(j,i+1)); %按照新的序列重新获得距离矩阵
end
end
[DZ,IZ]=sort(temp);
A=G(IZ(1:w),:); %选择目标函数值最小的w个个体进化到下一代
end
path=IX(IZ(1),:) ;
long=DZ(1) ;
%toc
xx=sj0(path,1);
yy=sj0(path,2);
plot(xx,yy,'-o');
---------------------
作者:越溪
来源:CSDN
原文:https://blog.csdn.net/longxinghaofeng/article/details/77504212
版权声明:本文为博主原创文章,转载请附上博文链接!

  经典的求解MTSP问题的(起始点为同一点)的matlab代码为:

function varargout = mtspf_ga(xy,dmat,salesmen,min_tour,pop_size,num_iter,show_prog,show_res)
% MTSPF_GA Fixed Multiple Traveling Salesmen Problem (M-TSP) Genetic Algorithm (GA)
% Finds a (near) optimal solution to a variation of the M-TSP by setting
% up a GA to search for the shortest route (least distance needed for
% each salesman to travel from the start location to individual cities
% and back to the original starting place)
%
% Summary:
% 1. Each salesman starts at the first point, and ends at the first
% point, but travels to a unique set of cities in between
% 2. Except for the first, each city is visited by exactly one salesman
%
% Note: The Fixed Start/End location is taken to be the first XY point
%
% Input:
% XY (float) is an Nx2 matrix of city locations, where N is the number of cities
% DMAT (float) is an NxN matrix of city-to-city distances or costs
% SALESMEN (scalar integer) is the number of salesmen to visit the cities
% MIN_TOUR (scalar integer) is the minimum tour length for any of the
% salesmen, NOT including the start/end point
% POP_SIZE (scalar integer) is the size of the population (should be divisible by 8)
% NUM_ITER (scalar integer) is the number of desired iterations for the algorithm to run
% SHOW_PROG (scalar logical) shows the GA progress if true
% SHOW_RES (scalar logical) shows the GA results if true
%
% Output:
% OPT_RTE (integer array) is the best route found by the algorithm
% OPT_BRK (integer array) is the list of route break points (these specify the indices
% into the route used to obtain the individual salesman routes)
% MIN_DIST (scalar float) is the total distance traveled by the salesmen
%
% Route/Breakpoint Details:
% If there are 10 cities and 3 salesmen, a possible route/break
% combination might be: rte = [5 6 9 4 2 8 10 3 7], brks = [3 7]
% Taken together, these represent the solution [1 5 6 9 1][1 4 2 8 1][1 10 3 7 1],
% which designates the routes for the 3 salesmen as follows:
% . Salesman 1 travels from city 1 to 5 to 6 to 9 and back to 1
% . Salesman 2 travels from city 1 to 4 to 2 to 8 and back to 1
% . Salesman 3 travels from city 1 to 10 to 3 to 7 and back to 1
%
% 2D Example:
% n = 35;
% xy = 10*rand(n,2);
% salesmen = 5;
% min_tour = 3;
% pop_size = 80;
% num_iter = 5e3;
% a = meshgrid(1:n);
% dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n);
% [opt_rte,opt_brk,min_dist] = mtspf_ga(xy,dmat,salesmen,min_tour, ...
% pop_size,num_iter,1,1);
%
% 3D Example:
% n = 35;
% xyz = 10*rand(n,3);
% salesmen = 5;
% min_tour = 3;
% pop_size = 80;
% num_iter = 5e3;
% a = meshgrid(1:n);
% dmat = reshape(sqrt(sum((xyz(a,:)-xyz(a',:)).^2,2)),n,n);
% [opt_rte,opt_brk,min_dist] = mtspf_ga(xyz,dmat,salesmen,min_tour, ...
% pop_size,num_iter,1,1);
%
% See also: mtsp_ga, mtspo_ga, mtspof_ga, mtspofs_ga, mtspv_ga, distmat
%
% Author: Joseph Kirk
% Email: jdkirk630@gmail.com
% Release: 1.3
% Release Date: 6/2/09 % Process Inputs and Initialize Defaults
nargs = 8;
for k = nargin:nargs-1
switch k
case 0
xy = 10*rand(40,2);
case 1
N = size(xy,1);
a = meshgrid(1:N);
dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),N,N);
case 2
salesmen = 5;
case 3
min_tour = 5;
case 4
pop_size = 160;
case 5
num_iter = 5e3;
case 6
show_prog = 1;
case 7
show_res = 1;
otherwise
end
end % Verify Inputs
[N,dims] = size(xy);
[nr,nc] = size(dmat);
if N ~= nr || N ~= nc
error('Invalid XY or DMAT inputs!')
end
n = N - 1; % Separate Start/End City % Sanity Checks
salesmen = max(1,min(n,round(real(salesmen(1)))));
min_tour = max(1,min(floor(n/salesmen),round(real(min_tour(1)))));
pop_size = max(8,8*ceil(pop_size(1)/8));
num_iter = max(1,round(real(num_iter(1))));
show_prog = logical(show_prog(1));
show_res = logical(show_res(1)); % Initializations for Route Break Point Selection
num_brks = salesmen-1;
dof = n - min_tour*salesmen; % degrees of freedom
addto = ones(1,dof+1);
for k = 2:num_brks
addto = cumsum(addto);
end
cum_prob = cumsum(addto)/sum(addto); % Initialize the Populations
pop_rte = zeros(pop_size,n); % population of routes
pop_brk = zeros(pop_size,num_brks); % population of breaks
for k = 1:pop_size
pop_rte(k,:) = randperm(n)+1;
pop_brk(k,:) = randbreaks();
end % Select the Colors for the Plotted Routes
clr = [1 0 0; 0 0 1; 0.67 0 1; 0 1 0; 1 0.5 0];
if salesmen > 5
clr = hsv(salesmen);
end % Run the GA
global_min = Inf;
total_dist = zeros(1,pop_size);
dist_history = zeros(1,num_iter);
tmp_pop_rte = zeros(8,n);
tmp_pop_brk = zeros(8,num_brks);
new_pop_rte = zeros(pop_size,n);
new_pop_brk = zeros(pop_size,num_brks);
if show_prog
pfig = figure('Name','MTSPF_GA | Current Best Solution','Numbertitle','off');
end
for iter = 1:num_iter
% Evaluate Members of the Population
for p = 1:pop_size
d = 0;
p_rte = pop_rte(p,:);
p_brk = pop_brk(p,:);
rng = [[1 p_brk+1];[p_brk n]]';
for s = 1:salesmen
d = d + dmat(1,p_rte(rng(s,1))); % Add Start Distance
for k = rng(s,1):rng(s,2)-1
d = d + dmat(p_rte(k),p_rte(k+1));
end
d = d + dmat(p_rte(rng(s,2)),1); % Add End Distance
end
total_dist(p) = d;
end % Find the Best Route in the Population
[min_dist,index] = min(total_dist);
dist_history(iter) = min_dist;
if min_dist < global_min
global_min = min_dist;
opt_rte = pop_rte(index,:);
opt_brk = pop_brk(index,:);
rng = [[1 opt_brk+1];[opt_brk n]]';
if show_prog
% Plot the Best Route
figure(pfig);
for s = 1:salesmen
rte = [1 opt_rte(rng(s,1):rng(s,2)) 1];
if dims == 3, plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:));
else plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:)); end
title(sprintf('Total Distance = %1.4f, Iteration = %d',min_dist,iter));
hold on
end
if dims == 3, plot3(xy(1,1),xy(1,2),xy(1,3),'ko');
else plot(xy(1,1),xy(1,2),'ko'); end
hold off
end
end % Genetic Algorithm Operators
rand_grouping = randperm(pop_size);
for p = 8:8:pop_size
rtes = pop_rte(rand_grouping(p-7:p),:);
brks = pop_brk(rand_grouping(p-7:p),:);
dists = total_dist(rand_grouping(p-7:p));
[ignore,idx] = min(dists);
best_of_8_rte = rtes(idx,:);
best_of_8_brk = brks(idx,:);
rte_ins_pts = sort(ceil(n*rand(1,2)));
I = rte_ins_pts(1);
J = rte_ins_pts(2);
for k = 1:8 % Generate New Solutions
tmp_pop_rte(k,:) = best_of_8_rte;
tmp_pop_brk(k,:) = best_of_8_brk;
switch k
case 2 % Flip
tmp_pop_rte(k,I:J) = fliplr(tmp_pop_rte(k,I:J));
case 3 % Swap
tmp_pop_rte(k,[I J]) = tmp_pop_rte(k,[J I]);
case 4 % Slide
tmp_pop_rte(k,I:J) = tmp_pop_rte(k,[I+1:J I]);
case 5 % Modify Breaks
tmp_pop_brk(k,:) = randbreaks();
case 6 % Flip, Modify Breaks
tmp_pop_rte(k,I:J) = fliplr(tmp_pop_rte(k,I:J));
tmp_pop_brk(k,:) = randbreaks();
case 7 % Swap, Modify Breaks
tmp_pop_rte(k,[I J]) = tmp_pop_rte(k,[J I]);
tmp_pop_brk(k,:) = randbreaks();
case 8 % Slide, Modify Breaks
tmp_pop_rte(k,I:J) = tmp_pop_rte(k,[I+1:J I]);
tmp_pop_brk(k,:) = randbreaks();
otherwise % Do Nothing
end
end
new_pop_rte(p-7:p,:) = tmp_pop_rte;
new_pop_brk(p-7:p,:) = tmp_pop_brk;
end
pop_rte = new_pop_rte;
pop_brk = new_pop_brk;
end if show_res
% Plots
figure('Name','MTSPF_GA | Results','Numbertitle','off');
subplot(2,2,1);
if dims == 3, plot3(xy(:,1),xy(:,2),xy(:,3),'k.');
else plot(xy(:,1),xy(:,2),'k.'); end
title(' Locations');
subplot(2,2,2);
imagesc(dmat([1 opt_rte],[1 opt_rte]));
title('Distance Matrix');
subplot(2,2,3);
rng = [[1 opt_brk+1];[opt_brk n]]';
for s = 1:salesmen
rte = [1 opt_rte(rng(s,1):rng(s,2)) 1]
if dims == 3, plot3(xy(rte,1),xy(rte,2),xy(rte,3),'.-','Color',clr(s,:));
else plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:)); end
title(sprintf('Total time = %1.4f',min_dist));
hold on;
end
if dims == 3, plot3(xy(1,1),xy(1,2),xy(1,3),'ko');
else plot(xy(1,1),xy(1,2),'ko'); end
subplot(2,2,4);
plot(dist_history,'b','LineWidth',2);
title('Best Solution History');
set(gca,'XLim',[0 num_iter+1],'YLim',[0 1.1*max([1 dist_history])]);
end % Return Outputs
if nargout
varargout{1} = opt_rte;
varargout{2} = opt_brk;
varargout{3} = min_dist;
end % Generate Random Set of Break Points
function breaks = randbreaks()
if min_tour == 1 % No Constraints on Breaks
tmp_brks = randperm(n-1);
breaks = sort(tmp_brks(1:num_brks));
else % Force Breaks to be at Least the Minimum Tour Length
num_adjust = find(rand < cum_prob,1)-1;
spaces = ceil(num_brks*rand(1,num_adjust));
adjust = zeros(1,num_brks);
for kk = 1:num_brks
adjust(kk) = sum(spaces == kk);
end
breaks = min_tour*(1:num_brks) + cumsum(adjust);
end
end
end

  

MTSP问题的更多相关文章

  1. 2016全国研究生数学建模A题多无人机协同任务规划——基于分布式协同多旅行商MTSP遗传算法

    MTSP问题是指:有Ⅳ个城市,要求旅行商到达每个城市各一次,且仅一次,并[旦 1到起点,且要求旅行路线最短.而多旅行商问题M个旅行商从同一个城市(或多个城市)出发.分羽走一条旅路线,且总路程缀短.有关 ...

  2. hdu 4281(MTSP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4281 题意:给出N个点,第一个点是裁判,其他N-1个点需要裁判过去回答问题,每个点需要的时间不一样,而 ...

  3. HDU 4281 (状态压缩+背包+MTSP)

    Judges' response Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. hdu 4281 Judges' response(多旅行商&DP)

    Judges' response Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. DP专题·三(01背包+完全背包)

    1.hdu 2126 Buy the souvenirs 题意:给出若干个纪念品的价格,求在能购买的纪念品的数目最大的情况下的购买方案. 思路:01背包+记录方案. #include<iostr ...

  6. MDS算法及其matlab实现

    问题背景: 在求解MTSP问题的时候,因为已知的为各个巡检点之间路径耗时长度,而这个具体描述采用无向图结构可以很好的描述,在matlab中通过函数(graphallshortestpaths)可以得到 ...

随机推荐

  1. 读书笔记 - js高级程序设计 - 第五章 引用类型

      引用类型 和 类 不是一个概念 用typeof来检测属性是否存在 typeof args.name == "string"  需要实验 访问属性的方法 .号和[] 一般情况下要 ...

  2. delphi 串口的打开与关闭

    Delphi 打开串口与关闭串口 procedure TForm1.btn1Click(Sender: TObject); begin cm1.CommName:=cbb1.Text; cm1.Bau ...

  3. sed使用案例

    简介: sed是一种流编辑器,它是文本处理中非常重要的工具,能够完美的配合正则表达式使用,功能不同凡响.处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用 ...

  4. 浅入深出Java输入输出流主线知识梳理

      Java把不同类型的输入.输出,这些输入输出有些是在屏幕上.有些是在电脑文件上, 都抽象为流(Stream) 按流的方向,分为输入流与输出流,注意这里的输出输出是相对于程序而言的,如:如对于一个J ...

  5. java笔记5

    1. JUnit 单元测试:方法名任意,但是没有参数列表. 注解: @Test @Ignore @Before @After 2. 泛型 1. 在集合中使用泛型 2. 在通用性较高的代码中使用泛型 1 ...

  6. 吴裕雄--天生自然 JAVASCRIPT开发学习:测试 jQuery

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. “杀死”纸质名片!HiHello能重构商业关系网吗?

    在当下的互联网时代,要添加好友去扩大自己的社交圈似乎是再简单不过.随便点击一个微信名片.与其他网友互相关注微博等,好像就又搭建了一个社交节点.暂且不讨论这些好友关系的质量问题,单是这样的方式并不适合于 ...

  8. python获取页面文字信息

    # -*- coding: utf- -*- from selenium import webdriver import time, re,requests,os,time,random,traceb ...

  9. Flink(四) —— 数据流编程模型

    分层抽象 The lowest level abstraction simply offers stateful streaming. It is embedded into the DataStre ...

  10. softmax和分类模型

    softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集 ...