数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法
算法复杂度主方法
有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来。
一、复杂度主方法
主方法,也可以叫主定理。对于那些用分治法,有递推关系式的算法,可以很快求出其复杂度。
定义如下:

如果对证明感兴趣的可以翻阅书籍:《算法导论》。如果觉得太难思考,可以跳过该节。
由于主定理的公式十分复杂,所以这里有一种比较简化的版本来计算:

二、举例
- 二分搜索,每次问题规模减半,只查一个数,递推过程之外的查找复杂度为
O(1),递推运算时间公式为:T(n) = T(n/2) + O(1)。 - 快速排序,每次随机选一个数字作为划分进行排序,每次问题规模减半,递推过程之外的排序复杂度为
O(n),递推运算时间递推公式为:T(n) = 2T(n/2) + O(n)。
按照简化版的主定理,可以知道:
二分查找:a = 1,b = 2,d = 0,可以知道a = b^d,所以二分查找的时间复杂度为:O(logn)。
快速排序:a = 2,b = 2,d = 1,可以知道a = b^d,所以快速排序的时间复杂度为:O(nlogn)。
强调:并非所有递推关系式都可应用主定理,但是大部分情况下都可以。
因为需要较多的数学知识,所以我们只简单介绍到这里。
延伸-计算理论:P和NP问题
在计算机科学中,有一个专门的分支研究问题的可计算性,叫做计算理论。
我们用计算机算法来解决一个问题,如果一个问题被证明很难计算,或者只能暴力枚举来解决,那么我们就不必花大力气去质疑使用的算法是不是错了,为什么这么慢,计算怎么久都没出结果,到底有没有更好的算法。
计算机科学把一个待解决的问题分类为:P问题,NP问题,NPC问题,NP-hard问题。
一、P 和 NP 问题
类似于O(1),O(logn),O(n)等复杂度,规模n出现在底数的位置,计算机能在多项式时间解决,我们称为多项式级的复杂。
类似于O(n!),O(2^n)等复杂度,规模n出现在顶部的位置,计算机能在非多项式时间解决,我们称为非多项式级的复杂度。
如果一个问题,可以用一个算法在多项式时间内解决,它称为P问题(P为Polynominal的缩写,多项式)。
比如求1加到100的总和,它的时间复杂度是O(n),是多项式时间。
然而有些问题,只能用枚举的方式求解,时间复杂度是指数级别,非多项式时间,但是只要有一个解,我们能在多项式时间验证这个解是对的,这类问题称为NP问题。
也就是说,如果我们只能靠猜出问题的一个解,然后可以用多项式时间来验证这个解,这些问题都是NP问题。
所以,按照定义,所有的P问题都是NP问题。
计算理论延伸出了图灵机理论,自动机=算法。
有两种自动机,一种是确定性自动机,机器从一个状态到另外一个状态的变化,只有一个分支可以走,而非确定性自动机,从一个状态到另外一个状态,有多个分支可以走。P问题都可以用两种机器来解决,当非确定性自动机退化就变成了确定性自动机,而NP问题只能用非确定性自动机来解决。
自动机对N和NP问题的定义:
可以在确定性自动机以多项式时间解决的问题,称为P问题,可以在多项式时间验证答案的问题称为NP问题。而NP问题是可以在非确定型自动机以多项式时间解决的问题(NP两字为Non-deterministicPolynomial的缩写,非确定多项式)。
数学,计算机科学,哲学,三个学科其实交融在一起,自动机是一台假想的机器,世界其实也可以认为是一个假想的机器,所以世界可以等于一台自动机吗,大家可以发挥想象力,在以后的日子里慢慢体会,建议购买书籍《计算理论》补习相关知识。
二、NPC 和 NP-hard 问题
存在这样一个NP问题,所有的NP问题都可以约化成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。其定义要满足2个条件:
- 它得是一个
NP问题。 - 所有的
NP问题都可以约化到它。
这种问题称为NP完全问题(NPC)。按照这种定义,NP问题要比NPC问题的范围广。
那什么是NP-hard问题,其定义要满足2个条件:
- 所有的
NP问题都可以约化到它。 - 它不是一个
NP问题。
也就是说,NP-hard问题更难,你只要解决了NP-hard问题,那么所有的NP问题都可以解决。但是,这个问题本身不是一个NP问题,也就是解不能在多项式时间内被验证。
比如你有一个交际网,每个人是一个节点,认识的人之间相连。你要通过一个最快、最省钱、最能提升你个人形象、最没有威胁、最不影响你日常生活的方式认识一个萌妹,你怎么证明你认识这个萌妹是最省钱的呢?-来自知乎回答。
我们一旦发现一个问题是NPC问题,那么我们很难去准确求出其解,只能暴力枚举,靠猜。
三、总结
各类问题可以用这个图来表示:

"P=NP" 问题的目标,就是想要知道P和NP这两个集合是否相等。为了证明两个集合(A和B)相等,一般都要证明两个方向:
A包含B。B包含A。
我们已经说过NP包含了P。因为任何一个非确定性机器,都能被当成一个确定性的机器来用。你只要不使用它的“超能力”,在每个分支点只探索一条路径就行。
所以 "P=NP" 就在于P是否也包含了NP。也就是说,如果只使用确定性计算机,能否在多项式时间之内,解决所有非确定性计算机能在多项式时间内解决的问题。
系列文章入口
我是陈星星,欢迎阅读我亲自写的 数据结构和算法(Golang实现),文章首发于 阅读更友好的GitBook。
- 数据结构和算法(Golang实现)(1)简单入门Golang-前言
- 数据结构和算法(Golang实现)(2)简单入门Golang-包、变量和函数
- 数据结构和算法(Golang实现)(3)简单入门Golang-流程控制语句
- 数据结构和算法(Golang实现)(4)简单入门Golang-结构体和方法
- 数据结构和算法(Golang实现)(5)简单入门Golang-接口
- 数据结构和算法(Golang实现)(6)简单入门Golang-并发、协程和信道
- 数据结构和算法(Golang实现)(7)简单入门Golang-标准库
- 数据结构和算法(Golang实现)(8.1)基础知识-前言
- 数据结构和算法(Golang实现)(8.2)基础知识-分治法和递归
- 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号
- 数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法
- 数据结构和算法(Golang实现)(11)常见数据结构-前言
- 数据结构和算法(Golang实现)(12)常见数据结构-链表
- 数据结构和算法(Golang实现)(13)常见数据结构-可变长数组
- 数据结构和算法(Golang实现)(14)常见数据结构-栈和队列
- 数据结构和算法(Golang实现)(15)常见数据结构-列表
- 数据结构和算法(Golang实现)(16)常见数据结构-字典
- 数据结构和算法(Golang实现)(17)常见数据结构-树
- 数据结构和算法(Golang实现)(18)排序算法-前言
- 数据结构和算法(Golang实现)(19)排序算法-冒泡排序
- 数据结构和算法(Golang实现)(20)排序算法-选择排序
- 数据结构和算法(Golang实现)(21)排序算法-插入排序
- 数据结构和算法(Golang实现)(22)排序算法-希尔排序
- 数据结构和算法(Golang实现)(23)排序算法-归并排序
- 数据结构和算法(Golang实现)(24)排序算法-优先队列及堆排序
- 数据结构和算法(Golang实现)(25)排序算法-快速排序
- 数据结构和算法(Golang实现)(26)查找算法-哈希表
- 数据结构和算法(Golang实现)(27)查找算法-二叉查找树
- 数据结构和算法(Golang实现)(28)查找算法-AVL树
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
- 数据结构和算法(Golang实现)(30)查找算法-2-3-4树和普通红黑树
数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法的更多相关文章
- 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号
算法复杂度及渐进符号 一.算法复杂度 首先每个程序运行过程中,都要占用一定的计算机资源,比如内存,磁盘等,这些是空间,计算过程中需要判断,循环执行某些逻辑,周而反复,这些是时间. 那么一个算法有多好, ...
- 数据结构和算法(Golang实现)(4)简单入门Golang-结构体和方法
结构体和方法 一.值,指针和引用 我们现在有一段程序: package main import "fmt" func main() { // a,b 是一个值 a := 5 b : ...
- C#基础知识学习(1)方法的重写和隐藏
做了1年多了C#,发现些项目过程中很多基础东西都不是很清晰,基础不够牢固.现在开始复习基础知识并做重点记录 方法需要被重写的时候,可以在方法前加入virtual使方法变成虚方法. 这样我们可以重新写个 ...
- 算法导论 - 基础知识 - 算法基础(插入排序&归并排序)
在<算法导论>一书中,插入排序作为一个例子是第一个出现在该书中的算法. 插入排序: 对于少量元素的排序,它是一个有效的算法. 插入排序的工作方式像许多人排序一手扑克牌.开始时,我们手中牌为 ...
- 1.10 基础知识——GP3.1 制度化 & GP3.2 收集改进信息
摘要: GP3.1是要求建立组织级的关于该过程的制度.标准.模版等全套体系,要求覆盖该PA所有的SP和GP.GP3.2 体现的是持续改进,每个过程都应该收集相应的改进信息. 正文: GP3.1 Est ...
- Oracle优化器基础知识之访问数据的方法
目录 一.访问数据的方法 1.直接访问数据 2.访问索引 一.访问数据的方法 Oracle访问表中数据的方法有两种,一种是直接表中访问数据,另外一种是先访问索引,如果索引数据不符合目标SQL,就回表, ...
- python基础知识02-序列类型的方法
列表的方法: 增:append() insert() extend()只能添加序列类型. .改li[0]= '123' li.insert(2,'123') 2个参数,位置,值 li.remove(' ...
- scrapy基础知识之 使用FormRequest.from_response()方法模拟用户登录:
通常网站通过 实现对某些表单字段(如数据或是登录界面中的认证令牌等)的预填充 使用Scrapy抓取网页时,如果想要预填充或重写像用户名.用户密码这些表单字段, 可以使用 FormRequest.fro ...
- python基础知识五 各类型数据方法补充,转换,分类,编码+坑中菜
3.9各类型数据方法补充,转换,分类,编码,坑中菜 3.9.1数据类型方法补充 1.str:不可变 补充方法 s1.capitalize():首字母大写 s1 = "alex" s ...
随机推荐
- [C#] 命令总线模式
1 高内聚.低耦合 虽然已经毕业很多年了,但依然总是能记得,<软件工程>这门课的老师总是强调 "高内聚,低耦合". 这些年,在架构方面的技术发展方向,目标就是不断的拆分 ...
- 聊聊OkHttp实现WebSocket细节,包括鉴权和长连接保活及其原理!
一.序 OkHttp 应该算是 Android 中使用最广泛的网络库了,我们通常会利用它来实现 HTTP 请求,但是实际上它还可以支持 WebSocket,并且使用起来还非常的便捷. 那本文就来聊聊, ...
- VMware虚拟机安装Mac OS X 10.12
VMware Workstation Pro 14 安装Mac OS X 10.12 下面是所需要的补丁工具及镜像 VMware Workstation unlocker-master(OS X 虚拟 ...
- ArrayList,HashSet,SortedSet之间的区别是什么?
今天看Redis官方案例,出现了列表和集合概念,列表在Java中指的就是List,集合在Java中指的就是Set,那么怎么实现列表和集合,以及它们有什么区别呢? 我写了个Demo演示下: import ...
- List集合概述和特点
List集合概述 有序集合(也称序列)用户可以精确控制列表的每一个元素的位置插入,用户可以通过整数索引访问元素,并搜索列表中的元素 与set集合不同,列表通常允许重复的元素 List集合的特点 有序: ...
- 2020年Java基础高频面试题汇总(1.4W字详细解析)
1. Java语言有哪些特点 (1)简单易学.有丰富的类库 (2)面向对象(Java最重要的特性,让程序耦合度更低,内聚性更高) (3)与平台无关性(JVM是Java跨平台使用的根本) (4)可靠安全 ...
- JDK14的新特性-Switch新功能
2020年3月17日,Oracle正式发布了JDK14版本,共新增了16项新特性 本文重点写一下关于switch的新功能: switch 表达式扩展了 switch 语句,使其不仅可以作为语句(sta ...
- 使用Python创建自己的Instagram滤镜
不知道你有没有使用过Instagram滤镜,它们非常方便,只需单击几个按钮,就可以变换我要发布的照片. 你是否想过自己可以创建一个?答案是可以的! 在本文中,我将向你展示如何使用代码和示例图像来创 ...
- HTTP 请求状态码
200 请求成功 304 从缓存中读取 302 + 响应头中定义location: 重定向 // 自定义重定向 @RequestMapping("/customRedirecti ...
- iOS isa 和 Class
一.Runtime 简介 Runtime 又叫运行时,是一套底层的 C 语言 API,是 iOS 系统的核心之一.开发者在编码过程中,可以给任意一个对象发送消息,在编译阶段只是确定了要向接收者发送这条 ...