深入理解RocketMQ(九)---实战(代码)
一、批量发送消息
即多条消息放入List,一次发送,从而减少网络传输,提高效率
DefaultMQProducer producer = new DefaultMQProducer("batch_send_producer_group");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();
String topic = "batchTopic";
List<Message> messageList = new ArrayList<>();
for (int i = 0; i < 10; i++) {
Message msg = new Message(topic,"TAG1","ORDER" + i, "Hello world".getBytes());
messageList.add(msg);
}
try{
producer.send(messageList);
}catch (Exception e){
e.printStackTrace();
}
producer.shutdown();
二、消息发送队列自主选择
例:可以将同一订单(不同操作,例如下单、付款、出库、订单完成等操作)发送到同一个queue中,来保证一个订单不同操作的顺序性
DefaultMQProducer producer = new DefaultMQProducer("select_queue_producer_group");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();
String topic = "selectQueueTopic";
String[] tags = new String[]{"TAG","TAG2","TAG3","TAG4","TAG5"};
int orderId = 41;
int orderId1 = 42;
try{
for (int i = 0; i < 10; i++) {
Message msg = new Message(topic,tags[i%tags.length],"KEY" + i, ("Hello world"+i).getBytes());
SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
return mqs.get((Integer) arg % mqs.size());
}
},orderId1);
System.out.println(orderId1 + "=======" + sendResult);
sendResult = producer.send(msg, new MessageQueueSelector() {
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
return mqs.get((Integer) arg % mqs.size());
}
},orderId);
System.out.println(orderId + "=======" + sendResult);
}
}catch (Exception e){
e.printStackTrace();
}
producer.shutdown();
输入如下:

可以看到订单ID为41的消息,全部发送到queueId为1的队列中,订单ID为42的消息,全部发送到QueueId为2的队列中
三、订单过滤
1、TAG模式过滤(多个tag使用 || 区分)
DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();
String topic = "TagFilterTopic1";
String tagA = "TagA";
String tagB = "TagB";
for (int i = ; i < ; i++) {
try {
Message msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.send(msg);
msg = new Message(topic,tagB,("tagA==========22222222222").getBytes(RemotingHelper.DEFAULT_CHARSET));
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
} catch (Exception e) {
e.printStackTrace();
Thread.sleep();
}
}
producer.shutdown();
消息消费
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("tagFileterConcumer");
consumer.setNamesrvAddr("127.0.0.1:9876");
consumer.setConsumerGroup("tagFileterConcumerGroup");
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer.subscribe("TagFilterTopic1", "TagA");
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagA Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start();
System.out.printf("Consumer Started.%n");
DefaultMQPushConsumer consumer1 = new DefaultMQPushConsumer("tagFileterConcumer1");
consumer1.setNamesrvAddr("127.0.0.1:9876");
consumer1.setConsumerGroup("tagFileterConcumerGroup1");
consumer1.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer1.subscribe("TagFilterTopic1", "TagA || TagB");
consumer1.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagA&TagB Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer1.start();
System.out.printf("Consumer Started.%n");
DefaultMQPushConsumer consumer2 = new DefaultMQPushConsumer("tagFileterConcumer2");
consumer2.setNamesrvAddr("127.0.0.1:9876");
consumer2.setConsumerGroup("tagFileterConcumerGroup2");
consumer2.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer2.subscribe("TagFilterTopic1", "TagB");
consumer2.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagB Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer2.start();
System.out.printf("Consumer Started.%n");
执行结果:可以看到只需要TagA的消费者,只输出了一条消息;只需要TagB的消费者,也只输出了一条消息

2、SQL过滤
需要开启支持sql92:在broker.conf文件中添加如下配置:enablePropertyFilter=true
发送者:
DefaultMQProducer producer = new DefaultMQProducer("sql_filter_group_name");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start();
String topic = "SqlFilterTopic1";
String tagA = "TagA";
for (int i = ; i < ; i++) {
try {
Message msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","lcl");
msg.putUserProperty("orderId","");
SendResult sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","lcl");
msg.putUserProperty("orderId","");
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","mm");
msg.putUserProperty("orderId","");
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","lcl");
msg.putUserProperty("orderId","");
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","lcl");
msg.putUserProperty("orderId","");
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
} catch (Exception e) {
e.printStackTrace();
Thread.sleep();
}
}
producer.shutdown();
消费者:
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("sqlFileterConcumer");
consumer.setNamesrvAddr("127.0.0.1:9876");
consumer.setConsumerGroup("tagFileterConcumerGroup");
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer.subscribe("SqlFilterTopic1", MessageSelector.bySql("(orderStatus = '1' and userName = 'lcl' and orderId > 0)"));
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagA Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start();
System.out.printf("Consumer Started.%n");
DefaultMQPushConsumer consumer1 = new DefaultMQPushConsumer("tagFileterConcumer1");
consumer1.setNamesrvAddr("127.0.0.1:9876");
consumer1.setConsumerGroup("tagFileterConcumerGroup1");
consumer1.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer1.subscribe("TagFilterTopic1", "TagA || TagB");
consumer1.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagA&TagB Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer1.start();
System.out.printf("Consumer Started.%n");
DefaultMQPushConsumer consumer2 = new DefaultMQPushConsumer("tagFileterConcumer2");
consumer2.setNamesrvAddr("127.0.0.1:9876");
consumer2.setConsumerGroup("tagFileterConcumerGroup2");
consumer2.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer2.subscribe("TagFilterTopic1", "TagB");
consumer2.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagB Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer2.start();
System.out.printf("Consumer Started.%n");
消费者输出结果:

3、类过滤模式
深入理解RocketMQ(九)---实战(代码)的更多相关文章
- 看完让你彻底理解 WebSocket 原理,附完整的实战代码(包含前端和后端)
1.前言 最近有同学问我有没有做过在线咨询功能.同时,公司也刚好让我接手一个 IM 项目.所以今天抽时间记录一下最近学习的内容.本文主要剖析了 WebSocket 的原理,以及附上一个完整的聊天室实战 ...
- DOM基础操作实战代码
对于已经讲解给大家的DOM实战,我今天给大家几个实战代码,可以让大家加深对此的理解! 1.用DOM动态生成这样一个结构: <div class=”example”> <p class ...
- 深入理解RocketMQ的消费者组、队列、Broker,Topic
1.遇到的问题:上测试环境,上次描述的鸟问题又出现了,就是生产者发3条数据,我这边只能收到1条数据. 2.问题解决: (1)去控制台看我的消费者启动情况,貌似没什么问题 , (2)去测试服务器里看日志 ...
- HtmlAgilityPack实战代码
C#采集代理服务器ip并设置IE代理--HtmlAgilityPack实战代码 今天在博客园看到一篇文章,说是C#采集某某的数据,其实做采集小软件很久了, 用的最好的还是HtmlAgilityPack ...
- SpringCloud---熔断降级理解、Hystrix实战(五)
SpringCloud---熔断降级理解.Hystrix实战(五) https://www.cnblogs.com/qdhxhz/p/9581440.html https://blog.csdn.ne ...
- SpringCloud(6)---熔断降级理解、Hystrix实战
SpringCloud(6)---熔断降级理解.Hystrix实战 一.概念 1.为什么需要熔断降级 (1)需求背景 它是系统负载过高,突发流量或者网络等各种异常情况介绍,常用的解决方案. 在一个分布 ...
- dubbo项目实战代码展示
最近公司项目使用dubbo服务,于是就去网上搜索关于dubbo的相关资料,真的很多,但是对于很多人并不是很了解框架或者 不是太适合新手的片段代码,于是我就根据项目的相关内容把dubbo部分单独切出来, ...
- EM算法理解的九层境界
EM算法理解的九层境界 EM 就是 E + M EM 是一种局部下限构造 K-Means是一种Hard EM算法 从EM 到 广义EM 广义EM的一个特例是VBEM 广义EM的另一个特例是WS算法 广 ...
- Magenta Demos Magenta 实战代码
Magenta 实战代码 这个仓库包含了很多 Magenta 模型的实现.看 Magenta 库以及模型,看我们的主仓库:https://github.com/tensorflow/magenta A ...
- 创建HttpFilter与理解多个Filter代码的执行顺序
1.自定义的HttpFilter,实现Filter接口 HttpFilter package com.aff.filter; import java.io.IOException; import ja ...
随机推荐
- Java实现 LeetCode 658 找到 K 个最接近的元素(暴力)
658. 找到 K 个最接近的元素 给定一个排序好的数组,两个整数 k 和 x,从数组中找到最靠近 x(两数之差最小)的 k 个数.返回的结果必须要是按升序排好的.如果有两个数与 x 的差值一样,优先 ...
- 第三届蓝桥杯JavaB组国(决)赛真题
解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论 题目1.数量周期 [结果填空](满分9分) 复杂现象背后的推动力,可能是极其简单的原理.科学的目标之一就是发现纷繁复杂的自然现象背后的简单法则 ...
- Java实现第十届蓝桥杯JavaC组第十题(试题J)扫地机器人
扫地机器人 时间限制: 1.0s 内存限制: 512.0MB 本题总分:25 分 [问题描述] 小明公司的办公区有一条长长的走廊,由 N 个方格区域组成,如下图所 示. 走廊内部署了 K 台扫地机器人 ...
- java实现第三届蓝桥杯古代赌局
古代赌局 [编程题](满分23分) 俗话说:十赌九输.因为大多数赌局的背后都藏有阴谋.不过也不尽然,有些赌局背后藏有的是:"阳谋". 有一种赌局是这样的:桌子上放六个匣子,编号是1 ...
- tensorflow2.0学习笔记第一章第五节
1.5简单神经网络实现过程全览
- 温故知新-Mysql索引结构&页&聚集索引&非聚集索
文章目录 摘要 索引 索引概述 索引优势劣势 索引结构 BTREE 结构 B+TREE 结构 页 索引分类 索引语法 索引设计原则 聚触索引 & 非聚触索引 你的鼓励也是我创作的动力 Post ...
- Numpy中数据的常用的保存与读取
保存到文本文件numpy.savetxt()numpy.loadtxt() import numpy as np x= np.arange(0,10,0.1) np.savetxt('save_x', ...
- 关于GatewayClient 介绍和使用
GatewayClient ## 源码 https://github.com/walkor/GatewayClient 根据GatewayWorker版本,选择合适的GatewayClient版本,请 ...
- 深浅拷贝 set集合
数据类型的补充 编码转换 # s1 = '中国' # b1 = s1.encode('utf-8') # # print(b1)-------------->b'\xe4\xb8\xad\xe5 ...
- 第m大的身份证号码(局部排序代全局、结构体排序)
第m大的身份证号码(点击) 时间限制: 1 Sec 内存限制: 128 MB ...