一、批量发送消息

  即多条消息放入List,一次发送,从而减少网络传输,提高效率

DefaultMQProducer producer = new DefaultMQProducer("batch_send_producer_group");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start(); String topic = "batchTopic";
List<Message> messageList = new ArrayList<>(); for (int i = 0; i < 10; i++) {
Message msg = new Message(topic,"TAG1","ORDER" + i, "Hello world".getBytes());
messageList.add(msg);
}
try{
producer.send(messageList);
}catch (Exception e){
e.printStackTrace();
} producer.shutdown();

二、消息发送队列自主选择

例:可以将同一订单(不同操作,例如下单、付款、出库、订单完成等操作)发送到同一个queue中,来保证一个订单不同操作的顺序性

DefaultMQProducer producer = new DefaultMQProducer("select_queue_producer_group");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start(); String topic = "selectQueueTopic"; String[] tags = new String[]{"TAG","TAG2","TAG3","TAG4","TAG5"}; int orderId = 41;
int orderId1 = 42;
try{
for (int i = 0; i < 10; i++) {
Message msg = new Message(topic,tags[i%tags.length],"KEY" + i, ("Hello world"+i).getBytes());
SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
return mqs.get((Integer) arg % mqs.size());
}
},orderId1);
System.out.println(orderId1 + "=======" + sendResult); sendResult = producer.send(msg, new MessageQueueSelector() {
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
return mqs.get((Integer) arg % mqs.size());
}
},orderId);
System.out.println(orderId + "=======" + sendResult);
} }catch (Exception e){
e.printStackTrace();
} producer.shutdown();

输入如下:

可以看到订单ID为41的消息,全部发送到queueId为1的队列中,订单ID为42的消息,全部发送到QueueId为2的队列中

三、订单过滤

1、TAG模式过滤(多个tag使用 || 区分)

DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
producer.setNamesrvAddr("127.0.0.1:9876"); producer.setNamesrvAddr("127.0.0.1:9876");
producer.start(); String topic = "TagFilterTopic1";
String tagA = "TagA";
String tagB = "TagB";
for (int i = ; i < ; i++) {
try {
Message msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.send(msg); msg = new Message(topic,tagB,("tagA==========22222222222").getBytes(RemotingHelper.DEFAULT_CHARSET));
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
} catch (Exception e) {
e.printStackTrace();
Thread.sleep();
}
}
producer.shutdown();

消息消费

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("tagFileterConcumer");

        consumer.setNamesrvAddr("127.0.0.1:9876");
consumer.setConsumerGroup("tagFileterConcumerGroup");
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer.subscribe("TagFilterTopic1", "TagA");
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagA Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start(); System.out.printf("Consumer Started.%n"); DefaultMQPushConsumer consumer1 = new DefaultMQPushConsumer("tagFileterConcumer1"); consumer1.setNamesrvAddr("127.0.0.1:9876");
consumer1.setConsumerGroup("tagFileterConcumerGroup1");
consumer1.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer1.subscribe("TagFilterTopic1", "TagA || TagB");
consumer1.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagA&TagB Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer1.start();
System.out.printf("Consumer Started.%n"); DefaultMQPushConsumer consumer2 = new DefaultMQPushConsumer("tagFileterConcumer2"); consumer2.setNamesrvAddr("127.0.0.1:9876");
consumer2.setConsumerGroup("tagFileterConcumerGroup2");
consumer2.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer2.subscribe("TagFilterTopic1", "TagB");
consumer2.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagB Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer2.start();
System.out.printf("Consumer Started.%n");

执行结果:可以看到只需要TagA的消费者,只输出了一条消息;只需要TagB的消费者,也只输出了一条消息

2、SQL过滤

需要开启支持sql92:在broker.conf文件中添加如下配置:enablePropertyFilter=true

发送者:

DefaultMQProducer producer = new DefaultMQProducer("sql_filter_group_name");
producer.setNamesrvAddr("127.0.0.1:9876");
producer.start(); String topic = "SqlFilterTopic1";
String tagA = "TagA";
for (int i = ; i < ; i++) {
try {
Message msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","lcl");
msg.putUserProperty("orderId","");
SendResult sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult); msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","lcl");
msg.putUserProperty("orderId","");
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult); msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","mm");
msg.putUserProperty("orderId","");
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult); msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","lcl");
msg.putUserProperty("orderId","");
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult); msg = new Message(topic,tagA,("tagA==========11111111111").getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.putUserProperty("orderStatus","");
msg.putUserProperty("userName","lcl");
msg.putUserProperty("orderId","");
sendResult = producer.send(msg);
System.out.printf("%s%n", sendResult);
} catch (Exception e) {
e.printStackTrace();
Thread.sleep();
}
}
producer.shutdown();

消费者:

DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("sqlFileterConcumer");

        consumer.setNamesrvAddr("127.0.0.1:9876");
consumer.setConsumerGroup("tagFileterConcumerGroup");
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer.subscribe("SqlFilterTopic1", MessageSelector.bySql("(orderStatus = '1' and userName = 'lcl' and orderId > 0)"));
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagA Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer.start(); System.out.printf("Consumer Started.%n"); DefaultMQPushConsumer consumer1 = new DefaultMQPushConsumer("tagFileterConcumer1"); consumer1.setNamesrvAddr("127.0.0.1:9876");
consumer1.setConsumerGroup("tagFileterConcumerGroup1");
consumer1.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer1.subscribe("TagFilterTopic1", "TagA || TagB");
consumer1.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagA&TagB Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer1.start();
System.out.printf("Consumer Started.%n"); DefaultMQPushConsumer consumer2 = new DefaultMQPushConsumer("tagFileterConcumer2"); consumer2.setNamesrvAddr("127.0.0.1:9876");
consumer2.setConsumerGroup("tagFileterConcumerGroup2");
consumer2.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_TIMESTAMP);
consumer2.subscribe("TagFilterTopic1", "TagB");
consumer2.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,
ConsumeConcurrentlyContext context) {
System.out.printf("%s TagB Receive New Messages: %s %n", Thread.currentThread().getName(), msgs);
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
consumer2.start();
System.out.printf("Consumer Started.%n");

消费者输出结果:

3、类过滤模式

深入理解RocketMQ(九)---实战(代码)的更多相关文章

  1. 看完让你彻底理解 WebSocket 原理,附完整的实战代码(包含前端和后端)

    1.前言 最近有同学问我有没有做过在线咨询功能.同时,公司也刚好让我接手一个 IM 项目.所以今天抽时间记录一下最近学习的内容.本文主要剖析了 WebSocket 的原理,以及附上一个完整的聊天室实战 ...

  2. DOM基础操作实战代码

    对于已经讲解给大家的DOM实战,我今天给大家几个实战代码,可以让大家加深对此的理解! 1.用DOM动态生成这样一个结构: <div class=”example”> <p class ...

  3. 深入理解RocketMQ的消费者组、队列、Broker,Topic

    1.遇到的问题:上测试环境,上次描述的鸟问题又出现了,就是生产者发3条数据,我这边只能收到1条数据. 2.问题解决: (1)去控制台看我的消费者启动情况,貌似没什么问题 , (2)去测试服务器里看日志 ...

  4. HtmlAgilityPack实战代码

    C#采集代理服务器ip并设置IE代理--HtmlAgilityPack实战代码 今天在博客园看到一篇文章,说是C#采集某某的数据,其实做采集小软件很久了, 用的最好的还是HtmlAgilityPack ...

  5. SpringCloud---熔断降级理解、Hystrix实战(五)

    SpringCloud---熔断降级理解.Hystrix实战(五) https://www.cnblogs.com/qdhxhz/p/9581440.html https://blog.csdn.ne ...

  6. SpringCloud(6)---熔断降级理解、Hystrix实战

    SpringCloud(6)---熔断降级理解.Hystrix实战 一.概念 1.为什么需要熔断降级 (1)需求背景 它是系统负载过高,突发流量或者网络等各种异常情况介绍,常用的解决方案. 在一个分布 ...

  7. dubbo项目实战代码展示

    最近公司项目使用dubbo服务,于是就去网上搜索关于dubbo的相关资料,真的很多,但是对于很多人并不是很了解框架或者 不是太适合新手的片段代码,于是我就根据项目的相关内容把dubbo部分单独切出来, ...

  8. EM算法理解的九层境界

    EM算法理解的九层境界 EM 就是 E + M EM 是一种局部下限构造 K-Means是一种Hard EM算法 从EM 到 广义EM 广义EM的一个特例是VBEM 广义EM的另一个特例是WS算法 广 ...

  9. Magenta Demos Magenta 实战代码

    Magenta 实战代码 这个仓库包含了很多 Magenta 模型的实现.看 Magenta 库以及模型,看我们的主仓库:https://github.com/tensorflow/magenta A ...

  10. 创建HttpFilter与理解多个Filter代码的执行顺序

    1.自定义的HttpFilter,实现Filter接口 HttpFilter package com.aff.filter; import java.io.IOException; import ja ...

随机推荐

  1. Username for 'https://github.com': remote: Invalid username or password. fatal: Authentication failed for 'https://github.com/GLSmile/pythontest.git/' 问题

    使用$ git push -u origin master 进行同步时,提示输入用户名和密码,但是我输入正确的信息后,仍然 会报Username for 'https://github.com': r ...

  2. Java实现 LeetCode 363 矩形区域不超过 K 的最大数值和

    363. 矩形区域不超过 K 的最大数值和 给定一个非空二维矩阵 matrix 和一个整数 k,找到这个矩阵内部不大于 k 的最大矩形和. 示例: 输入: matrix = [[1,0,1],[0,- ...

  3. Java实现 蓝桥杯 算法提高 Monday-Saturday质因子

    试题 算法提高 Monday-Saturday质因子 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 这个问题是个简单的与数论有关的题目,看起来似乎是"求正整数的所有质因子 ...

  4. java实现矩阵变换加密法

    一种Playfair密码变种加密方法如下:首先选择一个密钥单词(称为pair)(字母不重复,且都为小写字母),然后与字母表中其他字母一起填入至一个5x5的方阵中,填入方法如下: 1.首先按行填入密钥串 ...

  5. java实现第四届蓝桥杯阶乘位数

    阶乘位数 题目描述 如图p1.jpg所示,3 x 3 的格子中填写了一些整数. 我们沿着图中的红色线剪开,得到两个部分,每个部分的数字和都是60. 本题的要求就是请你编程判定:对给定的m x n 的格 ...

  6. Linux fdisk手动分区

    查询系统中可以被识别的硬盘:fdisk -l 可以看到,我的服务器只有一块硬盘,容量是53.7GB,有1个分区,文件系统类型是Linux,Id 是83(82是Linux swap分区,相当于Windo ...

  7. Java使用 Thumbnails 压缩图片

    业务:用户上传一张图片到文件站,需要返回原图url和缩略图url 处理思路: 因为上传图片方法返回url是单个上传,第一步先上传原图并返回url 处理缩略图并上传:拿到MultipartFile压缩成 ...

  8. el-table的花样需求---表格加图片、加音频、加序号、多级动态表头

    elemnet-ui组件库大家应该不陌生,在展示多条结构类似的数据方面,el-table可谓扛把子,不仅可以把数据展示的整齐,还支持排序.筛选或其他自定义操作.那么,除了上述的基本功能外,你还遇到过哪 ...

  9. 如何在Vim中的查找替换

    “%s/最/第二/g” 用vim的人都知道,这是把所有“最”替换成“第二”的意思.其实vim的查找替换功能非常强大,用的好可以极大提升效率. vim的查找替换命令如下所示:    :{作用范围}s/{ ...

  10. centos7 和centos6 服务操作命令对比

    以httpd为例子: 指令名称 centos 6 centos 7 启动服务 service httpd start systemctl start httpd.service 关闭服务 servic ...