"""
Given two strings text1 and text2, return the length of their longest common subsequence.
A subsequence of a string is a new string generated from the original string with some characters(can be none) deleted without changing the relative order of the remaining characters. (eg, "ace" is a subsequence of "abcde" while "aec" is not). A common subsequence of two strings is a subsequence that is common to both strings.
If there is no common subsequence, return 0.
Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.
""" """
提交显示wrong answer,但在IDE是对的
其实这个代码很冗余,应该是 超时
"""
class Solution1:
def longestCommonSubsequence(self, text1, text2):
res1, res2 = 0, 0
i, j = 0, 0
while i < len(text1) and j < len(text2):
if text1[i] == text2[j]:
res1 += 1
i += 1
j += 1
else:
if len(text1) - i < len(text2) - j: #第二遍循环是为了处理这个
i += 1
else:
j += 1
i, j = 0, 0
while i < len(text1) and j < len(text2):
if text1[i] == text2[j]:
res2 += 1
i += 1
j += 1
else:
if len(text1) - i > len(text2) - j:
i += 1
else:
j += 1
res = max(res1, res2)
return res """
经典的动态规划,用一个二维数组,存当前的结果
如果值相等:dp[i][j] = dp[i-1][j-1] + 1
如果值不等:dp[i][j] = max(dp[i-1][j], dp[i][j-1]) 左边和上边的最大值
在矩阵 m行n列容易溢出,这点很难把握
目前的经验,每次严格按照行-列的顺序进行
"""
class Solution:
def longestCommonSubsequence(self, text1, text2):
n = len(text1)
m = len(text2)
dp = [[0]*(m+1) for _ in range(n+1)] #建立 n+1行 m+1列矩阵,值全为0
for i in range(1, n+1): #bug 内外循环层写反了,导致溢出,n+1 * m+1 矩阵
for j in range(1, m+1):
if text1[i-1] == text2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
return dp[-1][-1]

leetcode1143 Longest Common Subsequence的更多相关文章

  1. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  2. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

  3. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  4. LCS(Longest Common Subsequence 最长公共子序列)

    最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  5. Longest Common Subsequence

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  6. Longest Common Subsequence & Substring & prefix

    Given two strings, find the longest common subsequence (LCS). Your code should return the length of  ...

  7. Dynamic Programming | Set 4 (Longest Common Subsequence)

    首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...

  8. Lintcode:Longest Common Subsequence 解题报告

    Longest Common Subsequence 原题链接:http://lintcode.com/zh-cn/problem/longest-common-subsequence/ Given ...

  9. UVA 10405 Longest Common Subsequence (dp + LCS)

    Problem C: Longest Common Subsequence Sequence 1: Sequence 2: Given two sequences of characters, pri ...

随机推荐

  1. IDEA中使用GsonFormat

    版本:IDEA Community 2019.2.2 说明:GsonFormat是一个可以直接将Json对象转化为Java类的插件 流程:安装GsonFormat插件=>新建一个空类Book=& ...

  2. Nmap 使用

    0×01 前言 因为今天的重点并非nmap本身的使用,主要还是想借这次机会给大家介绍一些在实战中相对比较实用的nmap脚本,所以关于nmap自身的一些基础选项就不多说了,详情可参考博客端口渗透相关文章 ...

  3. spring boot 中 Cache 的使用

    参考:https://blog.csdn.net/qq_38974634/article/details/80650810 一.JSR107 Java Caching 定义5个核心的接口,分别是Cac ...

  4. CentOS 7 搭建Cobbler实现自动化安装系统

    1.安装软件包 # yum -y install epel-release     #安装EPEL源 # yum -y install cobbler dhcp pykickstart 2.启动cob ...

  5. Thymeleaf基本知识(推荐)

    原文: http://blog.csdn.net/pdw2009/article/details/44700897 Thymeleaf是个XML/XHTML/HTML5模板引擎,可以用于Web与非We ...

  6. Day11 - O - Coin Game HDU - 3951

    题目链接 思路:考虑第一个人取的方式: 1.每次能取的次数>= n, 一次取完 first win 2.每次能取1个,n是奇数 first win 3.一次取不完,这种情况下也分2种情况 1)s ...

  7. Js为Dom元素绑定事件须知

    为异步加载的Dom 元素绑定事件必须在加载完成之后绑定: $('body').load('LearnClickBinding.ashx');$('a').click(function () { ale ...

  8. Keras入门——(3)生成式对抗网络GAN

    导入 matplotlib 模块: import matplotlib 查看自己版本所支持的backends: print(matplotlib.rcsetup.all_backends) 返回信息: ...

  9. linux修改键盘按键

    我的电脑:Fedora-19 $ uname -a Linux localhost.localdomain 3.11.10-200.fc19.i686 #1 SMP Mon Dec 2 20:48:2 ...

  10. 在线配置raid

    Exit Code: 0x00 rpm -ivh MegaCli-8.07.14-1.noarch.rpm ls /opt/MegaRAID/MegaCli//opt/MegaRAID/MegaCli ...