使用python解线性矩阵方程(numpy中的matrix类)
这学期有一门运筹学,讲的两大块儿:线性优化和非线性优化问题。在非线性优化问题这里涉及到拉格朗日乘子法,经常要算一些非常变态的线性方程,于是我就想用python求解线性方程。查阅资料的过程中找到了一个极其简单的解决方式,也学到了不少东西。先把代码给出。
import numpy as np
# A = np.mat('1 2 3;2 -1 1;3 0 -1')
A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]])
b = np.array([9, 8, 3])
x = np.linalg.solve(A, b)
print(x)
是不是很简洁?因为调用了强大的包numpy~ 我们想解决的问题是求解矩阵方程$Ax=b$。在这里调用numpy中的线性代数包np.linalg,使用其中的function->solve(A, b)。几行代码就解决了问题。在这里solve函数有两个输入,第一个输入是矩阵,可以采用numpy里的矩阵数据类型或者最常用的数组数据类型。第二个输入是右端项b,一个一维numpy数组即可。函数返回方程的解,shape和b是相同的。如果矩阵A是奇异的或者不是方阵,函数就会报错。
好了,问题得到了绝佳的解决,大不了把python当计算器来用呗~
下面是补充知识:numpy中的matrix类
matrix类是numpy中的一个过时的类,可能会在未来被移除。因为现在大多数人都会用更加灵活好用的ndarray,移除它也是可以理解的。
>>> a = np.matrix('1 2; 3 4')
>>> a
matrix([[1, 2],
[3, 4]])
>>> np.matrix([[1, 2], [3, 4]])
matrix([[1, 2],
[3, 4]])
matrix有两种构造方式,从第二种我们看到和一般的数组类型一模一样,在这里我们就能窥到matrix其实就是继承了ndarray,基于ndarray。拿matrix进行线性代数运算是因为它有很多方便的函数。
matrix.T transpose:返回矩阵的转置矩阵
matrix.H hermitian (conjugate) transpose:返回复数矩阵的共轭元素矩阵
matrix.I inverse:返回矩阵a逆矩阵
matrix.A base array:返回矩阵基于的数组
matrix.AI flattened ndarray: 返回展平的数组
其他的很多类方法不再介绍,以上四个是最基本的类似语法糖的函数。
需要注意的是,ndarray类型同样能方便地进行转置和求逆。
A = np.array([[1, 2], [3, 4]])
print(A.T) A_I = np.linalg.inv(A)
使用python解线性矩阵方程(numpy中的matrix类)的更多相关文章
- numpy中的matrix与array的区别
Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array ...
- Python与线性代数——Numpy中的matrix()和array()的区别
Numpy中matrix必须是2维的,但是 numpy中array可以是多维的(1D,2D,3D····ND).matrix是array的一个小的分支,包含于array.所以matrix 拥有arra ...
- arcgis python 使用光标和内存中的要素类将数据加载到要素集 学习:http://zhihu.esrichina.com.cn/article/634
学习:http://zhihu.esrichina.com.cn/article/634使用光标和内存中的要素类将数据加载到要素集 import arcpy arcpy.env.overwriteOu ...
- [转]numpy中的matrix矩阵处理
今天看文档发现numpy并不推荐使用matrix类型.主要是因为array才是numpy的标准类型,并且基本上各种函数都有队array类型的处理,而matrix只是一部分支持而已. 这个转载还是先放着 ...
- numpy中的matrix矩阵处理
numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中. class numpy.matr ...
- Python数据分析--Numpy常用函数介绍(4)--Numpy中的线性关系和数据修剪压缩
摘要:总结股票均线计算原理--线性关系,也是以后大数据处理的基础之一,NumPy的 linalg 包是专门用于线性代数计算的.作一个假设,就是一个价格可以根据N个之前的价格利用线性模型计算得出. 前一 ...
- Python数据分析工具库-Numpy 数组支持库(一)
1 Numpy数组 在Python中有类似数组功能的数据结构,比如list,但在数据量大时,list的运行速度便不尽如意,Numpy(Numerical Python)提供了真正的数组功能,以及对数据 ...
- Python 的整数与 Numpy 的数据溢出
某位 A 同学发了我一张截图,问为何结果中出现了负数? 看了图,我第一感觉就是数据溢出了.数据超出能表示的最大值,就会出现奇奇怪怪的结果. 然后,他继续发了张图,内容是 print(100000*20 ...
- Python numpy 中常用的数据运算
Numpy 精通面向数组编程和思维方式是成为Python科学计算大牛的一大关键步骤.——<利用Python进行数据分析> Numpy(Numerical Python)是Python科学计 ...
随机推荐
- JAVA反射整理总结
//1.通过对象获取 Person p=new Person(); Class c=p.getClass(); //2.通过类 ...
- OpenStack知识点详解
一:云计算 一.起源 1. 云计算这个概念首次在2006年8月的搜索引擎会议上提出,成为了继互联网.计算机后信息时代的又一种革新(互联网第三次革命). 2. 云计算的核心是将资源协调在一起,使 ...
- NO.3 MSP432P4_SDK浏览
网上关于MSP432的参考资料很少,我们要学习的最权威的资源只有TI提供的SDK.这是好处也是坏处,好处是我们学习的是TI一手资源,不再是拾人牙慧:坏处是英语能力要求较高. 闲话少说,我们先来看SDK ...
- 【转】网页的title左边的小图片怎么添加
首先,代码中的title标签里是不能加图片的.但是浏览器标提栏前面是可以加一个小图标的. 解决方案:第一步,做一个16 X 16像素的ico格式的图标.具体操作方法是,先在Photoshop中做一个透 ...
- strlen 老瓶装新酒
前言 - strlen 概述 无意间扫到 glibc strlen.c 中代码, 久久不能忘怀. 在一无所知的编程生涯中又记起点点滴滴: 编程可不是儿戏 ❀, 有些难, 也有些不舍. 随轨迹一同重温, ...
- 一个 static 还能难得住我?
static 是我们日常生活中经常用到的关键字,也是 Java 中非常重要的一个关键字,static 可以修饰变量.方法.做静态代码块.静态导包等,下面我们就来具体聊一聊这个关键字,我们先从基础开始, ...
- Spring-boot01
本文记录Spring-Boot学习途中的点点滴滴. 其实Spring-Boot出来好长时间了,但是一直没去关注过.之前在我的印象里Spring-Boot好就好在减去了很多XML配置,加入了很多自动配置 ...
- SpringBoot 之 拦截配置 与SpringCloud
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 一.SpringBoot 与 SpringMVC 的区别? SpringMVC是基于Spring的MV ...
- Java实现 LeetCode 678 有效的括号字符串(暴力+思路转换)
678. 有效的括号字符串 给定一个只包含三种字符的字符串:( ,) 和 *,写一个函数来检验这个字符串是否为有效字符串.有效字符串具有如下规则: 任何左括号 ( 必须有相应的右括号 ). 任何右括号 ...
- Java实现 LeetCode 394 字符串解码
394. 字符串解码 给定一个经过编码的字符串,返回它解码后的字符串. 编码规则为: k[encoded_string],表示其中方括号内部的 encoded_string 正好重复 k 次.注意 k ...