随机森林RF
bagging
随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输 入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本 为那一类。
在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那 么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M 个feature中,选择m个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一 个分类。一般很多的决策树算法都一个重要的步骤 - 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。
按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。我觉得可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域 的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数 据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。
优点
- 在数据集上表现良好
- 在当前的很多数据集上,相对其他算法有着很大的优势
- 它能够处理很高维度(feature很多)的数据,并且不用做特征选择
- 在训练完后,它能够给出哪些feature比较重要
- 在创建随机森林的时候,对generlization error使用的是无偏估计
- 训练速度快
- 在训练过程中,能够检测到feature间的互相影响
- 容易做成并行化方法
- 实现比较简单
随机森林RF的更多相关文章
- 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别
目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...
- 【机器学习】随机森林RF
随机森林(RF, RandomForest)包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定.通过自助法(boot-strap)重采样技术,不断生成训练样本和测试样本,由训练样本 ...
- Bagging与随机森林(RF)算法原理总结
Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没 ...
- 机器学习总结(二)bagging与随机森林
一:Bagging与随机森林 与Boosting族算法不同的是,Bagging和随机森林的个体学习器之间不存在强的依赖关系,可同时生成并行化的方法. Bagging算法 bagging的算法过程如下: ...
- SIGAI机器学习第十九集 随机森林
讲授集成学习的概念,Bootstrap抽样,Bagging算法,随机森林的原理,训练算法,包外误差,计算变量的重要性,实际应用 大纲: 集成学习简介 Boostrap抽样 Bagging算法 随机森林 ...
- 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)
使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...
- 机器学习入门-随机森林温度预测的案例 1.datetime.datetime.datetime(将字符串转为为日期格式) 2.pd.get_dummies(将文本标签转换为one-hot编码) 3.rf.feature_importances_(研究样本特征的重要性) 4.fig.autofmt_xdate(rotation=60) 对标签进行翻转
在这个案例中: 1. datetime.datetime.strptime(data, '%Y-%m-%d') # 由字符串格式转换为日期格式 2. pd.get_dummies(features) ...
- 随机森林(Random Forest,简称RF)
阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Pyth ...
- 集成学习_Bagging 和随机森林(rf)
集成学习方式总共有3种:bagging-(RF).boosting-(GBDT/Adaboost/XGBOOST).stacking 下面将对Bagging 进行介绍:(如下图所示) ...
随机推荐
- mysql悲观锁处理赠品库存超卖的情况
处理库存超卖的情况前,先了解下什么是乐观锁和悲观锁,下面的几篇博客已经介绍的比较详细了,我就不在赘述其原理了 [MySQL]悲观锁&乐观锁 对mysql乐观锁.悲观锁.共享锁.排它锁.行锁.表 ...
- 7个现在就该学习Python 的理由【80%的人都不知道】
Python 是一门更注重可读性和效率的语言,尤其是相较于 Java,PHP 以及 C++ 这样的语言,它的这两个优势让其在开发者中大受欢迎. 诚然,它有点老了,但仍是 80 后啊 —— 至少没有 C ...
- python爬虫破解带有RSA.js的RSA加密数据的反爬机制
前言 同上一篇的aes加密一样,也是偶然发现这个rsa加密的,目标网站我就不说了,保密. 当我发现这个网站是ajax加载时: 我已经习以为常,正在进行爬取时,发现返回为空,我开始用findler抓包, ...
- Python连载61-tkinter三种布局
一.pack布局举例 #pack布局案例 import tkinter baseFrame = tkinter.Tk() #以下代码都是创建一个组件,然后布局 btn1 = tkinter.Butto ...
- 吴裕雄--天生自然java开发常用类库学习笔记:System类
public class SystemDemo01{ public static void main(String args[]){ long startTime = System.currentTi ...
- 吴裕雄--天生自然java开发常用类库学习笔记:一对多关系范例
import java.util.List ; import java.util.ArrayList ; public class School{ private String name ; priv ...
- ACM-Antiprime数
问题描述: swust打不开,随便找了个博客.... 对于任何正整数x,起约数的个数记做g(x).例如g(1)=1,g(6)=4. 定义:如果某个正整数x满足:对于任意i(0<i<x) ...
- netty权威指南学习笔记五——分隔符和定长解码器的应用
TCP以流的方式进行数据传输,上层应用协议为了对消息进行区分,通常采用以下4中方式: 消息长度固定,累计读取到长度综合为定长LEN的报文后,就认为读取到了一个完整的消息,将计数器置位,重新开始读取下一 ...
- 四十、SAP中CASE语句用法
一.上代码 二.选择内容 三.输出 四.我们选择一个其他的值 五.查看输出
- Swift 闭包使用(循环引用...)
class networkTool: NSObject { //定义一个可选类型的闭包,用小括号()?括起闭包 var finishedCallBack2:((_ jsonData:String)-& ...