多核CPU硬件架构介绍
转自:http://book.51cto.com/art/201004/197196.htm
SISD、MIMD、SIMD、MISD计算机的体系结构
1. 计算平台介绍
Flynn于1972年提出了计算平台的Flynn分类法,主要根据指令流和数据流来分类,共分为四种类型的计算平台,如下图所示:

单指令流单数据流机器(SISD)
SISD机器是一种传统的串行计算机,它的硬件不支持任何形式的并行计算,所有的指令都是串行执行。并且在某个时钟周期内,CPU只能处理一个数据流。因此这种机器被称作单指令流单数据流机器。早期的计算机都是SISD机器,如冯诺.依曼架构,如IBM PC机,早期的巨型机和许多8位的家用机等。
单指令流多数据流机器(SIMD)
SIMD是采用一个指令流处理多个数据流。这类机器在数字信号处理、图像处理、以及多媒体信息处理等领域非常有效。
Intel处理器实现的MMXTM、SSE(Streaming SIMD Extensions)、SSE2及SSE3扩展指令集,都能在单个时钟周期内处理多个数据单元。也就是说我们现在用的单核计算机基本上都属于SIMD机器。
多指令流单数据流机器(MISD)
MISD是采用多个指令流来处理单个数据流。由于实际情况中,采用多指令流处理多数据流才是更有效的方法,因此MISD只是作为理论模型出现,没有投入到实际应用之中。
多指令流多数据流机器(MIMD)
MIMD机器可以同时执行多个指令流,这些指令流分别对不同数据流进行操作。最新的多核计算平台就属于MIMD的范畴,例如Intel和AMD的双核处理器等都属于MIMD。
本书所讲述的主要内容就是围绕多核计算平台而来的,下面就来介绍一下多核的硬件结构。
2. 多核CPU硬件结构
多核CPU是将多个CPU核集成到单个芯片中,每个CPU核都是一个单独的处理器。每个CPU核可以有自己单独的Cache,也可以多个CPU核共享同一Cache。下图便是一个不共享Cache的双核CPU体系结构。

在现代的多核硬件结构中,内存对多个CPU核是共享的,CPU核一般都是对称的,因此多核属于共享存储的对称多处理器(Symmetric Multi-processor,SMP)。
在多核硬件结构中,如果要充分发挥硬件的性能,必须要采用多线程(或多进程)执行,使得每个CPU核在同一时刻都有线程在执行。
和单核上的多线程不同,多核上的多个线程是在物理上并行执行的,是一种真正意义上的并行执行,在同一时刻有多个线程在并行执行。而单核上的多线程是一种多线程交错执行,实际上在同一时刻只有一个线程在执行。
3. 多核编程模型
前面谈到过多核属于共享存储的SMP,但实际上SMP系统出现在多核之前,服务器硬件中就广泛采用多个CPU构成的SMP系统,如双CPU、四CPU的服务器很早就出现了。多核CPU系统中的编程和多CPU的SMP系统的编程模型是一致的,都属于共享存储的编程模型,在本书中把它叫做多核编程,实际上并不限于在多核CPU系统中的编程,而是可以应用于共享存储的SMP系统中的编程。
多核CPU硬件架构介绍的更多相关文章
- [TimLinux] CPU 常见架构介绍
1. 简介 系统性能依赖硬件架构,CPU架构决定了硬件的布局.常见的CPU架构:SMP, NUMA, MPP. 2. SMP(对称多处理器) SMP:Symmetric Multiprocessing ...
- Micro:bit 硬件架构介绍
Micro:bit做为当红的少儿编程工具,这两年在编程教育领域越来越火.今天就从硬件架构开始,分享Micro:bit的相关主题. Microbit 硬件设计是根据ARM mbed技术所开发的应用IC及 ...
- Intel CPU平台和架构介绍
点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 服务器主板上数据传输流依次为CPU .内存.硬盘和网卡, ...
- CUDA01 - 硬件架构、warp调度、指令流水线和cuda并发流
这一部分打算从头记录一下CUDA的编程方法和一些物理架构上的特点:从硬件入手,写一下包括线程束的划分.流水线的调度等等微结构的问题,以及这些物理设备是如何与软件对应的.下一部分会写一下cuda中的几种 ...
- 微控制器(MCU)架构介绍
微控制器(MicroController)又可简称MCU或μC,也有人称为单芯片微控制器(Single Chip Microcontroller),将ROM.RAM.CPU.I/O集合在同一个芯片中, ...
- 浅谈多核CPU、多线程、多进程
1.CPU发展趋势 核心数目依旧会越来越多,依据摩尔定律,由于单个核心性能提升有着严重的瓶颈问题,普通的桌面PC有望在2017年末2018年初达到24核心(或者16核32线程),我们如何来面对这突如其 ...
- 【转】多核CPU运行模式
多核CPU运行模式主要有以下三种: •非对称多处理(Asymmetric multiprocessing,AMP)——每个CPU内核运行一个独立的操作系统或同一操作系统的独立实例(instantiat ...
- 原来,负载均衡可以这样用,多核CPU可以这样用
负载均衡作为一个处理高并发,大流量的访问的业务场景,已经几乎是常识性的知识了. 而本文的意义在于需求:由于大流量请求,导致服务无法正常响应,在不增加购买机器成本的场景下,如何提高服务器的业务处理能力? ...
- (概念)多个CPU和多核CPU以及超线程(Hyper-Threading)
引言 在这篇文章中我会主要介绍CPU相关的一些重要概念和技术.如果你想更好地了解操作系统,那就从本文开始吧. 中央处理器(Central processing unit) 在我们了解其它概念之前,我们 ...
随机推荐
- Mybatis基本入门搭建
一:Mybatis框架概述 1:什么是Mybatis 官方定义: MyBatis 是一款优秀的持久层框架,它支持自定义 SQL.存储过程以及高级映射.MyBatis 免除了几乎所有的 JDBC 代码以 ...
- Python 图像处理 OpenCV (7):图像平滑(滤波)处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- 调优 | Apache Hudi应用调优指南
通过Spark作业将数据写入Hudi时,Spark应用的调优技巧也适用于此.如果要提高性能或可靠性,请牢记以下几点. 输入并行性:Hudi对输入进行分区默认并发度为1500,以确保每个Spark分区都 ...
- tensorflow2.0学习笔记第二章第四节
2.4损失函数损失函数(loss):预测值(y)与已知答案(y_)的差距 nn优化目标:loss最小->-mse -自定义 -ce(cross entropy)均方误差mse:MSE(y_,y) ...
- 自动网络搜索(NAS)在语义分割上的应用(一)
[摘要]本文简单介绍了NAS的发展现况和在语义分割中的应用,并且详细解读了两篇流行的work:DARTS和Auto-DeepLab. 自动网络搜索 多数神经网络结构都是基于一些成熟的backbone, ...
- 【代理】内网穿透工具 frp&frps
frp 是一个高性能的反向代理应用,可以帮助您轻松地进行内网穿透,对外网提供服务,支持 tcp, http, https 等协议类型,并且 web 服务支持根据域名进行路由转发. ### frp 的作 ...
- SpringMVC处理json的四个步骤
导入相关的pom依赖 在springMVC的配置文件中开启MVC驱动,<mvc:annotation-driven /> 在处理ajax请求的方法上加上注解@ResponseBody 将要 ...
- Spring:工厂模式哪里解耦了?
菜瓜:我一定是太菜了,为什么别人说Spring屏蔽了new关键字创建对象就很丝滑?我完全get不到这个操作的好处啊,我自己写new它也很香啊 水稻:emmmm,换个角度想啊,如果把现在用的注解@Aut ...
- Pycharm下安装Numpy包
Numpy--Numerical Python,是一个基于Python的可以存储和处理大型矩阵的库.几乎是Python 生态系统的数值计算的基石,例如Scipy,Pandas,Scikit-learn ...
- 兄弟打印机MFC代码示范
m_strModel.LoadString(IDS_MODEL_STRING); //IDS_MODEL_STRING,字符串控件的ID,资源视图-String Table里面设置 m_strSour ...