C++提供下面两种方法分配和释放未构造的原始内存
(1)allocator 类,它提供可感知类型的内存分配
(2)标准库中的 operator new 和 operator delete,它们分配和释放需要大小的原始未类型化的内存
 
C++ 还提供不同的方法在原始内存中构造和撤销对象
(1)std::allocator<T>::construct 在未构造内存中初始化对象,std::allocator<T>::destroy 在对象上运行适当的析构函数。
(2)定位 new 表达式( placement new expression),接受指向未构造内存的指针,并在该空间中初始化一个对象或一个数组。
(3)直接调用析构函数来撤销对象
(4)算法 uninitialized_fill 和 uninitialized_copy 像 fill 算法和 copy 算法一样执行,除了它们在目的地构造对象而不给对象赋值之外。

std::allocator<T>

allocator类将内存的分配及对象构造分开。分配及释放分别是 allocate 和 deallocate 。构造和析构分别是 construct 和 destroy。

std::vector<T>

标准库中的 vector 是一个动态数组。在使用时,vector 预先分配一块内存,当数据增长到预先分配的内存不够使用时,vector 采取的策略是重新分配 2 倍于当前 vector 容量大小的内存,并把所有数据复制到新地址处,旧地址所有数据进行析构,最后将这块旧的内存释放。
  1.  template<class T>
    class vector
    {
    public:
    vector():elements(),first_free(),end(){}
    void push_back(const T&);
    //…
    private:
    static std::allocator<T> alloc;
    void reallocate();
    T* elements;
    T* first_free;
    T* end;
    //…
    };

elements 指向数组的第一个元素,first_free 指向第一个空闲的位置,end 指向数组最一个元素的下一个元素。

std::vector<T>::push_back(const T& t)

  1.  template <class T>
    void vector<T>::push_back(const T& t)
    {
    //are we out of space
    if(first_free == end)
    reallocate();// gets more space and copies existing elements to it
    alloc.construct(first_free,t);
    ++first_free;
    }
    template <class T>
    void vector<T>::reallocate()
    {
    std::ptrdiff_t size = first_free – elements;
    std::ptrdiff_t newcapacity = * max(size,); T* newelements = alloc.allocate(newcapacity); uninitialized_copy(elements,first_free,newelements); for(T *p = first_free; p != elements;}
    alloc.destroy(--p); if(elements)
    alloc.deallocate(elements,end-elements);
    elements = newelements;
    first_free = elements + size;
    end = elements + newcapacity;
    }
 

operator new 函数和 operator delete 函数

 
理解 new 表达式
  1.  //new expression
    string *sp =new string(“initialized”);

    首先,该表达式调用名为 operator new 的标准库函数,分配足够大的原始的未类型化的内存;

接下来,运行该类型的一个构造函数,用指定初始化式构造对象;
最后,返回指向新分配并构造的对象的指针
 
  1.  delete sp;

    首先,对 sp 指向的对象运行适当的析构函数

然后,通过调用名为 operator delete 的标准库函数释放该对象所用内存
 

operator new 和 operator delete 接口

  1.  void*operator new(size_t);
    void*operator new[](size_t);
    void*operator new(std::size_t size,void* ptr)throw();//placement void*operator delete(void*);
    void*operator delete[](void*);
与 allocator 类的 allocate 和 deallocate 成员类似。
 
但是,operator new 和 operator delete 在 void* 指针而不是类型化的指针上进行操作。这就意味着,allocate 成员分配类型化的内存,不必计算以字节为单位的所需内存量,它们也可以避免对 operator new 的返回值进行强制类型转换
 

placement new 定位 new 表达式

 
placement new 在已分配的原始内存中初始化一个对象。它与 new 的其它版本的不同之处在于,它不分配内存。
 
定位 new 表达式的形式是:
new (place_address) type
new (place_address) type (initializer-list)
 
例:
  1.  std::allocator<std::string> alloc;
    string *sp = alloc.allocate();// allocate space to hold 2 strings
    new(sp) string(b,e);
    alloc.construct(sp +, string(b,e));
总结
 

类特定的 new 和 delete

默认情况下, new 表达式通过调用由标准库定义的 operator new 版本分配内存。通过定义自己的名为 operator new 和 operator delete 的成员,类可以管理用于自身类型的内存。
 
编译器看到类类型的 new 或 delete 表达式的时候,它查看该类是否有 operator new 或  operator delete 成员,如果类定义(或者继承)了自己的成员 new 和 delete 函数,则使用那些函数为对象分配和释放内存;否则,调用这些函数的标准库版本。
 

一个内存分配器基类

通用策略:
预先分配一块原始内存来保存未构造的对象,创建新元素时,可以在一个预先分配的对象中构造;释放元素的时候,将它们放回预先分配对象的块中,而不是将内存实际返回给操作系统。
 
这种策略常被称为维持一个自由列表(freelist)。可以将自由列表实现为已分配但未构造的对象的链表。
 
  1.  template<class T>
    class CachedObj
    {
    public:
    void* operator new(std::size_t);
    void* operator delete(void*, std::size_t);
    virtual ~CachedObj(){}
    protected:
    T* next;
    private:
    static void add_to_freelist(T*);
    static std::allocator<T> alloc_mem;
    static T* freeStore;
    static const std::size_t chunk;
    }
CacheObj 只是分配和管理已分配但未构造对象的自由列表。
 
定义 operator new,返回自由列表的下一个元素,并将该元素从自由列表中删除。当自由列表为空的时候,operator new 将分配新的原始内存。
定义 operator delete,在撤销对象时将元素放回自由列表。
 
实现:
  1.  template<class T>
    void*CachedObj<T>::operator new(size_t sz)
    {
    if(sz != sizeof(T)) return nullptr;
    if(!freeStore)
    {
    T* array = alloc_mem.allocate(chunk);
    for(size_t i =; i != chunk;++i)
    add_to_freelist(&array[i]);
    }
    T*p = freeStore;
    freeStore = freeSore->CachedObj<T>::next;
    return p;
    }
    template<class T>
    void CachedObj<T>::add_to_freelist(T*p)
    {
    p->CachedObj<T>::next = freeStore;
    freeStore = p;
    }
    template<class T>
    void CachedObj<T>::operator delete(void*p)
    {
    if(p != )
    add_to_freelist(static_cast<T*>(p));
    }
 
CachedObj 其实很像 linux 的链表。除掉 private 的 static 变量和一个虚表的指针,CachedObj 其实只维护一个 T* next。它的内存布局像这样:
当继承 CachedObj 类的时候,用来实例化 CachedObj 类的模板类型将是派生类型本身。
 
其实就是利用模板很巧妙地把 next 指针的类型设置成子类的类型。实例化出来的类仿佛本就是一个类,没有两个类拼凑的感觉,天衣无缝。 
 
例如:
  1.  template<classType>
    class QueueItem:
    publicCachedObj<QueueItem<Type>>{};
QueueItem 继承自 CachedObj,它的内存布局类似这样:

C++中的内存分配的更多相关文章

  1. C语言中的内存分配与释放

    C语言中的内存分配与释放 对C语言一直都是抱着学习的态度,很多都不懂,今天突然被问道C语言的内存分配问题,说了一些自己知道的,但感觉回答的并不完善,所以才有这篇笔记,总结一下C语言中内存分配的主要内容 ...

  2. rt-thread中动态内存分配之小内存管理模块方法的一点理解

    @2019-01-18 [小记] rt-thread中动态内存分配之小内存管理模块方法的一点理解 > 内存初始化后的布局示意 lfree指向内存空闲区首地址 /** * @ingroup Sys ...

  3. Java基础-Java中的内存分配与回收机制

    Java基础-Java中的内存分配与回收机制 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一. 二.

  4. java中子类实例化过程中的内存分配

    知识点: 子类继承父类之后,实例化子类时,内存中子类是如何分配内存的呢? 下面,自己会结合一个例子,解释一下,一个子类实例化过程中,内存是如何分配的 参考博客:http://www.cnblogs.c ...

  5. Java实例化对象过程中的内存分配

    Java实例化对象过程中的内存分配: https://blog.csdn.net/qq_36934826/article/details/82685791 问题引入这里先定义一个很不标准的“书”类,这 ...

  6. Netty 中的内存分配浅析

    Netty 出发点作为一款高性能的 RPC 框架必然涉及到频繁的内存分配销毁操作,如果是在堆上分配内存空间将会触发频繁的GC,JDK 在1.4之后提供的 NIO 也已经提供了直接直接分配堆外内存空间的 ...

  7. Netty 中的内存分配浅析-数据容器

    本篇接续前一篇继续讲 Netty 中的内存分配.上一篇 先简单做一下回顾: Netty 为了更高效的管理内存,自己实现了一套内存管理的逻辑,借鉴 jemalloc 的思想实现了一套池化内存管理的思路: ...

  8. C语言中动态内存分配的本质是什么?

    摘要:C语言中比较重要的就是指针,它可以用来链表操作,谈到链表,很多时候为此分配内存采用动态分配而不是静态分配. 本文分享自华为云社区<[云驻共创]C语言中动态内存分配的本质>,作者: G ...

  9. iOS程序中的内存分配 栈区堆区全局区

    在计算机系统中,运行的应用程序的数据都是保存在内存中的,不同类型的数据,保存的内存区域不同.一.内存分区 栈区(stack) 由编译器自动分配并释放,存放函数的参数值,局部变量等.栈是系统数据结构,对 ...

  10. c++中函数中变量内存分配以及返回指针、引用类型的思考

    众所周知,我们在编程的时候经常会在函数中声明局部变量(包括普通类型的变量.指针.引用等等). 同时,为了满足程序功能的需要,函数的返回值也经常是指针类型或是引用类型,而这返回的指针或是引用也经常指向函 ...

随机推荐

  1. hashMap插入初始值

    加了this. 就很容易看出来是使用了内部类和{}代码块 当然也可以把this去掉, 更简洁, 只是不能一眼看出来怎么初始化的 类似的可以做ArrayList ....的初始化

  2. 92)PHP,cookie代码补充

    (1)Cookie值,仅仅支持字符串类型. (2)Cookie键,可以写成下标数组形式. beifen.php <?php /** * @第一个值是name * @第二个值是value * na ...

  3. python-倒序循环

    有时候循环需要用到倒序,所以整理一下倒序循环的方法 方法1: 如果要倒序遍历访问序列中的元素,可以对该序列使用reversed() 函数,reversed函数会生成一份倒序列表的拷贝,但是不会改变原列 ...

  4. java生成饼图

    pom.xml文件导入依赖包 <!-- https://mvnrepository.com/artifact/org.jfree/jfreechart --> <dependency ...

  5. 吴裕雄--天生自然 R语言开发学习:功效分析

    #----------------------------------------# # R in Action (2nd ed): Chapter 10 # # Power analysis # # ...

  6. function_exists (),method_exists()与is_callable()的区别

    is_callable()函数要高级一些,它接受字符串变量形式的方法名作为 第一个参数,如果类方法存在并且可以调用,则返回true.如果要检测类中的方法是否能被调用,可以给函数传递一个数组而不是类的方 ...

  7. docker 使用:镜像和容器

    docker 镜像 docker image是一个极度精简版的Linux程序运行环境,官网的java镜像包括的东西更少,除非是镜像叠加方式的如centos+java7,需要定制化build的一个安装包 ...

  8. javaweb 中 error-page

    我们的请求找不到时,会跳到错误页面,tomcat提供了一个错误页面,但是不太好.分析:tomcat自带错误页面不好的原因:有一下两点: 1.不好看: 2.不能为seo做出贡献.思考:如何解决以上问题? ...

  9. Luogu1681_ 最大正方形II

    题目背景 忙完了学校的事,v神终于可以做他的"正事":陪女朋友散步.一天,他和女朋友走着走着,不知不觉就来到了一个千里无烟的地方.v神正要往回走,如发现了一块牌子,牌子上有有一行小 ...

  10. 关于Docker清理

    在Docker的日常使用中,我们或许偶尔遇到下面这些情况: 12345678 $ docker-compose ps[27142] INTERNAL ERROR: cannot create temp ...