题意

定义无向图中的一条边的值为:这条边连接的两个点的值的异或值。

定义一个无向图的值为:这个无向图所有边的值的和。

给你一个有 \(n\) 个结点 \(m\) 条边的无向图。其中的一些点的值是给定的,而其余的点的值由你决定(但要求均为非负数),使得这个无向图的值最小。在无向图的值最小的前提下,使得无向图中所有点的值的和最小。

题解

对每一位单独考虑。对于已经确定的数,如果当前位是 \(0\) 则与起点连边,为 \(1\) 则与终点连边,然后原图上的边容量为 \(1\) 的边。这样对于未知的点我们选择是 \(0\) 还是 \(1\) ,就要把连到另一个集合的边给砍掉,我们最小化砍掉的边,即求最小割。

求第二个答案也很好求,我们直接 dfs 求出哪些点属于 \(T\) 集合即可。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
typedef long long ll;
const int N=505,M=20005,inf=1<<30;
int head[N],nxt[M],to[M],wei[M],lev[N],q[N],tot=1,n,m,s=1,t,u[M],v[M],w[N];
bool vis[N];
ll ans1,ans2,nw[N];
void addedge(int u, int v, int w) {
nxt[++tot]=head[u],head[u]=tot,to[tot]=v,wei[tot]=w;
nxt[++tot]=head[v],head[v]=tot,to[tot]=u,wei[tot]=0;
}
bool bfs()
{
memset(lev,-1,sizeof(lev));
int l=0,r=0;
q[0]=s; lev[s]=1;
while(l<=r)
{
int u=q[l++];
for(int e=head[u];e;e=nxt[e])
if(lev[to[e]]==-1&&wei[e])
{
lev[to[e]]=lev[u]+1;
if(to[e]==t) return true;
q[++r]=to[e];
}
}
return false;
}
int dfs(int u, int mx)
{
if(u==t) return mx;
int l=mx;
for(int e=head[u];e&&l;e=nxt[e])
if(lev[to[e]]==lev[u]+1&&wei[e]>0)
{
int f=dfs(to[e],min(l,wei[e]));
if(!f) lev[to[e]]=-1;
l-=f,wei[e]-=f,wei[e^1]+=f;
}
return mx-l;
}
void vist(int u)
{
vis[u]=true;
for(int e=head[u];e;e=nxt[e])
if(!vis[to[e]]&&wei[e^1]) vist(to[e]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1919.in","r",stdin);
#endif
n=gi(),m=gi();
s=n+1,t=n+2;
for(int i=1;i<=n;++i) w[i]=gi();
for(int i=1;i<=m;++i) u[i]=gi(),v[i]=gi();
for(int i=0;i<=30;++i)
{
memset(head,0,sizeof(head)),tot=1;
memset(vis,false,sizeof(vis));
for(int j=1;j<=n;++j)
if(w[j]>=0)
{
if(w[j]&(1<<i)) addedge(j,t,inf);
else addedge(s,j,inf);
}
for(int j=1;j<=m;++j) addedge(u[j],v[j],1),addedge(v[j],u[j],1);
int tmp=0; while(bfs()) tmp+=dfs(s,inf);
ans1+=1ll*tmp*(1<<i);
vist(t);
for(int j=1;j<=n;++j) if(vis[j]) nw[j]+=(1<<i);
}
printf("%lld\n",ans1);
for(int i=1;i<=n;++i) w[i]<0?ans2+=nw[i]:ans2+=w[i];
printf("%lld",ans2);
}

【BZOJ2400】Optimal Marks的更多相关文章

  1. 【BZOJ-2400】Spoj839Optimal Marks 最小割 + DFS

    2400: Spoj 839 Optimal Marks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 567  Solved: 202[Submit ...

  2. 【SPOJ839】Optimal Marks 网络流

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  3. 【BZOJ2400】Spoj 839 Optimal Marks 最小割

    [BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...

  4. 【bzoj2400】Spoj 839 Optimal Marks 按位最大流

    Spoj 839 Optimal Marks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 908  Solved: 347[Submit][Stat ...

  5. 【USACO】Optimal Milking

    题目链接 :        [POJ]点击打开链接        [caioj]点击打开链接 算法 : 1:跑一遍弗洛伊德,求出点与点之间的最短路径 2:二分答案,二分”最大值最小“ 3.1:建边,将 ...

  6. 【bzoj2400】Spoj 839 Optimal Marks 网络流最小割

    题目描述 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其余的点的值由你 ...

  7. 【poj2122】 Optimal Milking

    http://poj.org/problem?id=2112 (题目链接) 题意 有K个能挤M头奶牛的挤奶机和C头奶牛,告诉一些挤奶机和奶牛间距离,求最优分配方案使最大距离最小. Solution 先 ...

  8. 【LeetCode】数学(共106题)

    [2]Add Two Numbers (2018年12月23日,review) 链表的高精度加法. 题解:链表专题:https://www.cnblogs.com/zhangwanying/p/979 ...

  9. 【LeetCode】字符串 string(共112题)

    [3]Longest Substring Without Repeating Characters (2019年1月22日,复习) [5]Longest Palindromic Substring ( ...

随机推荐

  1. 字典NSDictionary和NSMutableDictionary的使用

    简介:字典是一种数据结构,字典里面的每一个元素,是一个key-value(键值对),key和value都是对象类型.同NSArray一样,里面的对象不用保持一致性. NSDictionary 1.字面 ...

  2. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表格:悬停表格

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  3. jQuery设置input的type属性

    $("#inputName").attr("type","text");

  4. 重要参考SQL

    --保存问卷调查信息IF ISNULL(OBJECT_ID('P_WebSaveSQRecord'),0) > 0 DROP PROCEDURE P_WebSaveSQRecordGO crea ...

  5. 通过CrawlSpider对招聘网站进行整站爬取(拉勾网实战)

    爬虫首先要明确自己要爬取的网站以及内容 进入拉勾网的网站然后看看想要爬取什么内容职位,薪资,城市,经验要求学历要求,全职或者兼职职位诱惑,职位描述提取公司的名称 以及 在拉勾网的url等等 然后在na ...

  6. android EditText中inputType的属性列表

    android 1.5以后添加了软件虚拟键盘的功能,所以在输入提示中将会有对应的软键盘模式 android中inputType属性在EditText输入值时启动的虚拟键盘的风格有着重要的作用.这也大大 ...

  7. java web开发_购物车功能实现

    java web开发_购物车功能实现 之前没有接触过购物车的东东,也不知道购物车应该怎么做,所以在查询了很多资料,总结一下购物车的功能实现. 查询的资料,找到三种方法: 1.用cookie实现购物车: ...

  8. POJ 2391 Ombrophobic Bovines 网络流 建模

    [题目大意]给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T使得在T时间内所有的牛都能进到某一牛棚里去.(1 <= N <= 200, 1 <= M & ...

  9. 十一 Socket编程

    一.  计算机网络: 将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来在网络操作系统.网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统 二.   ...

  10. greenplum 存储过程 输出信息

    raise notice 'just a simple output msg';