NumPy(Numerical Python) 是 Python 语言中做科学计算的基础库。重在于数值计算,也是大部分Python科学计算库的基础,多用于在大型、多维数组上执行的数值运算。

1.numpy数组的多种创建方式

1.1使用np.array()创建

使用array创建一个一维数组:

import numpy as np
arr1 = np.array([1,2,3])

使用array创建一个多维数组;

import numpy as np
arr1 = np.array([1,2,3],[1,2,3])

1.2使用plt创建

使用python中matploylib库,这个库中有一个imread方法,可以读取文件夹的图片,并转化为多维数组的形式存储起来,并且可以通过操作数组的方式对图片颜色进行操作。

import matplotlib.pyplot as plt
arr2 = plt.imread("1.png")
arr2

1.3使用np的routine函数创建

  • zero()
  • ones()
  • linespace()
  • arange()
  • random系列
arr3 = np.zeros(shape = (3,4))#创建一个三维数组,所有元素都为0
arr4 = np.ones(shape = (3,4))#创建一个三维数组,所有元素都为1
arr5 = np.linspace(1,100,num = 20)#创建一个等差数列一维数组
arr6 = np.arange(1,10)#创建一个1-10的数组
arr7 = np.random.randint(1,10,size = (3,4))#创建一个三维随机数数组

2.numpy的常用属性

2.1shape

shape - 这是一个用于表示数组形状的元组。它告诉我们每个维度的大小。例如,对于一个二维数组,形状将告诉我们行数和列数。

nums1 = np.array([[1,2,3],[4,5,6]])
print(nums1.shape)

2.2ndim

这是表示数组维度数量的整数。一个一维数组的 ndim 为 1,二维数组为 2,以此类推。

nums2 = np.array([[1,2,3],[4,5,6]])
nums2.ndim

2.3size

这是一个整数,表示数组中元素的总数。它是所有维度大小的乘积。

nums3 = np.array([[1,2,3],[4,5,6]])
nums3.size

2.4dtype

这是一个对象,表示数组中元素的数据类型。例如,整数、浮点数或自定义数据类型。

nums4 = np.array([[1,2,3],[4,5,6]])
nums4.dtype

3.numpy的索引和切片

索引操作和列表同理

3.1切出前两列数据

arr = np.random.randint(1,100,size=(5,6))
arr[:,0:2]#取出前两列的数据

3.2切出前两行数据

arr[0:2]#取出前两行的数据

3.3切出前两行的前两列的数据

arr[0:2,0:2]

3.4数组数据翻转

arr[::-1]#将数组行倒置
arr[::,::-1]#将数组列倒置
arr[::-1,::-1]#将数组行倒置和列倒置

3.5练习:将一张图片上下左右进行翻转操作

arr_image = plt.imread("1.png")
arr_image = arr_image[::-1]
plt.imshow(arr_image)

3.6练习:将图片进行指定区域的裁剪

plt.imshow(arr_image[60:100,200:500,])

4.统计&聚合&矩阵操作

4.1常用的统计函数

  • numpy.amin() 和 numpy.amax(),用于计算数组中的元素沿指定轴的最小、最大值。
  • numpy.ptp():计算数组中元素最大值与最小值的差(最大值 - 最小值)。
  • numpy.median() 函数用于计算数组 a 中元素的中位数(中值)
  • 标准差std():标准差是一组数据平均值分散程度的一种度量。
    • 公式:std = sqrt(mean((x - x.mean())**2))
    • 如果数组是 [1,2,3,4],则其平均值为 2.5。 因此,差的平方是 [2.25,0.25,0.25,2.25],并且其平均值的平方根除以 4,即 sqrt(5/4) ,结果为 1.1180339887498949。
  • 方差var():统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数,即 mean((x - x.mean())** 2)。换句话说,标准差是方差的平方根。
num.std()
num.var()

4.2常用的聚合操作

sum,max,min,mean

num = np.array([[69, 80,  7, 90, 31, 44],
[37, 57, 26, 92, 91, 34],
[13, 16, 93, 54, 87, 34],
[ 5, 16, 47, 66, 51, 12],
[54, 63, 20, 11, 94, 88]])
num.sum(axis = 1)
num.max(axis = 1)

4.3常用的矩阵操作

  • NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象。一个 的矩阵是一个由行(row)列(column)元素排列成的矩形阵列。
  • numpy.matlib.identity() 函数返回给定大小的单位矩阵。单位矩阵是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为 1,除此以外全都为 0。
arr.T#转置矩阵
#矩阵相乘
a1 = np.array([[2,1],[4,3]])
a2 = np.array([[1,2],[1,0]])
np.dot(a1,a2)

numpy的一些基本操作的更多相关文章

  1. numpy库常用基本操作

    NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是一个一维数 ...

  2. Numpy 数据类型和基本操作

    Numpy 数据类型 bool 用一位存储的布尔类型(值为TRUE或FALSE) inti 由所在平台决定其精度的整数(一般为int32或int64) int8 整数,范围为128至127 int1 ...

  3. Python Numpy 矩阵级基本操作(2)

    1.开方与求e指数 import numpy as np from numpy.matlib import randn print "Test sqrt and exp" arr ...

  4. Python Numpy 矩阵级基本操作(1)

    NumPy的操作介绍 import numpy as np #导入numpy包,简写为np print "Generate 1*10 matrix" a=np.arange(1,1 ...

  5. Numpy | ndarray数组基本操作

    搞不懂博客园表格的排版... 说明: 0 ndarray :多维数组对象 1 np :import numpy as np 2 nda :表示数组的名称 1 生成数组 函数名 描述 np.array ...

  6. 第四十篇 入门机器学习——Numpy.array的基本操作——向量及矩阵的运算

    No.1. Numpy.array相较于Python原生List的性能优势 No.2. 将向量或矩阵中的每个元素 + 1 No.2. 将向量或矩阵中的所有元素 - 1 No.3. 将向量或矩阵中的所有 ...

  7. 第三十八篇 入门机器学习——Numpy.array的基本操作——查看向量或矩阵

    No.1. 初始化状态 No.2. 通过ndim来查看数组维数,向量是一维数组,矩阵是二维数组 No.3. 通过shape来查看向量中元素的个数或矩阵中的行列数 No.4. 通过size来查看数组中的 ...

  8. 玩转NumPy数组

    一.Numpy 数值类型 1.前言:Python 本身支持的数值类型有 int(整型, long 长整型).float(浮点型).bool(布尔型) 和 complex(复数型).而 Numpy 支持 ...

  9. Numpy学习笔记(上篇)

    目录 Numpy学习笔记(上篇) 一.Jupyter Notebook的基本使用 二.Jpuyter Notebook的魔法命令 1.%run 2.%timeit & %%timeit 3.% ...

  10. 第三十七篇 入门机器学习——Numpy基础

    No.1. 查看numpy版本 No.2. 为了方便使用numpy,在导入时顺便起个别名 No.3. numpy.array的基本操作:创建.查询.修改 No.4. 用dtype查看当前元素的数据类型 ...

随机推荐

  1. 《最新出炉》系列初窥篇-Python+Playwright自动化测试-63 - Canvas和SVG元素定位

    1.简介 今天宏哥分享的在实际测试工作中很少遇到,比较生僻,如果突然遇到我们可能会脑大.懵逼,一时之间不知道怎么办?所以宏哥这里提供一种思路供大家学习和参考. 2.SVG简介 svg也是html5新增 ...

  2. Sentry 开源版与商业 SaaS 版的区别

    您会在官方的文档中找到大量对 sentry 和 getsentry 的引用.两者都是 Django 应用程序,但 sentry 是开源的, getsentry 是闭源的.里面有什么? https:// ...

  3. springboot之banner.txt

    在springboot启动过程中,我们经常可以看到控制台打印下面图文: 实际上这个打印图文,是可以自定义的,可以在springboot的resource中创建一个banner.txt文件,在启动时就会 ...

  4. MySQL中的char与varchar

    MySQL中的char与varchar char类型为固定长度的字符串 varchar类型是长度可变的字符串 char为固定长度的字符串意思是当我们设置一个字段类型为char时,指定char(100) ...

  5. Win32 状态栏用法

    WIN32 状态控件用法 1.创建控件 状态栏类名: STATUSCLASSNAME #define STATUSCLASSNAMEW        L"msctls_statusbar32 ...

  6. AD(Active Directory )域的搭建与操作

    AD 域的搭建与操作 一.准备工作 准备好 VM 虚拟机和 Server 的安装包. 二.安装 Server 2022 选择标准且有图形界面的进行安装. 选择自定义安装方式. 为虚拟机 server2 ...

  7. 使用 Quickwit 的搜索流功能为 ClickHouse 添加全文搜索

    本指南将帮助您使用 Quickwit 的搜索流功能为知名的 OLAP 数据库 ClickHouse 添加全文搜索.Quickwit 暴露了一个 REST 端点,可以极快地(每秒最多 5000 万条)流 ...

  8. python pyqt6 QComboBox 设定下拉框背景颜色

    设定QComboBox 的背景颜色,边框设定,以及下拉框的背景颜色以及边框设定, selection-background-color 不生效可忽略 xxx_source = QComboBox(se ...

  9. 坑人的opencv安装

    我想捡起来C++,最近在看opencv,于是我想着一起吧. 但是我低估了这个小麻烦的魅力,曾经安装opencv c++版本就头秃,如今依然头秃.说明我没长进啊-- 折腾了两天,终于装上了. 其中最麻烦 ...

  10. ASP.NET Core Library – Excel 读写

    前言 以前写过 EPPlus 的笔记, 但后来 EPPlus 开始收费了.... (这好像是 .NET 生态的宿命) 在找替代方案中看中了微软的 Open XML SDK. 但经过一番折腾, 它确实太 ...