题解 洛谷 P4171 【[JSOI2010]满汉全席】
考虑\(2-SAT\)。
将汉式看作\(0\)状态,满式看做\(1\)状态,将每个材料拆成\(01\)两个状态。
从\(a\)向\(b\)连有向边表示的意义为选了\(a\)后必须选\(b\)。
那么每次连边的方式如下:
\(add(x_{a \oplus 1},y_b),add(y_{b \oplus 1},x_a)\)(\(x_a\)和\(y_b\)为评审员的要求,\(x\)和\(y\)表示材料,\(a\)和\(b\)表示状态)
意义为若没有满足评审员的其中一个要求,则另一个要求必须满足。
连边后缩点,若发现\(x_a\)和\(x_{a \oplus 1}\)在同一强连通分量中,则无解。
其他的一些实现的处理,就看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 4000010
using namespace std;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int t,n,m;
char str[5];
struct edge
{
int to,nxt;
}e[maxn];
int head[maxn],edge_cnt;
void add(int from,int to)
{
e[++edge_cnt]=(edge){to,head[from]};
head[from]=edge_cnt;
}
int dfn_cnt,co_cnt,top;
int dfn[maxn],low[maxn],co[maxn],st[maxn];
bool vis[maxn];
void tarjan(int x)
{
dfn[x]=low[x]=++dfn_cnt;
st[++top]=x;
vis[x]=true;
for(int i=head[x];i;i=e[i].nxt)
{
int y=e[i].to;
if(!dfn[y])
{
tarjan(y);;
low[x]=min(low[x],low[y]);
}
else if(vis[y])
low[x]=min(low[x],dfn[y]);
}
if(low[x]==dfn[x])
{
co_cnt++;
int now;
do
{
now=st[top--];
vis[now]=false;
co[now]=co_cnt;
}while(now!=x);
}
}
bool check()
{
for(int i=1;i<=2*n;++i)
if(!dfn[i])
tarjan(i);
for(int i=1;i<=n;++i)
if(co[i]==co[i+n])
return false;
return true;
}
void clear()
{
top=dfn_cnt=co_cnt=edge_cnt=0;
memset(co,0,sizeof(co));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vis,0,sizeof(vis));
memset(head,0,sizeof(head));
}
int main()
{
read(t);
while(t--)
{
clear();
read(n),read(m);
while(m--)
{
int x,y,a,b,len;
scanf("%s",str);
if(str[0]=='h') a=0;
else a=1;
x=0,len=strlen(str);
for(int i=1;i<len;++i) x=x*10+str[i]-'0';
scanf("%s",str);
if(str[0]=='h') b=0;
else b=1;
y=0,len=strlen(str);
for(int i=1;i<len;++i) y=y*10+str[i]-'0';
add(x+(a^1)*n,y+b*n),add(y+(b^1)*n,x+a*n);
}
if(check()) puts("GOOD");
else puts("BAD");
}
return 0;
}
题解 洛谷 P4171 【[JSOI2010]满汉全席】的更多相关文章
- 洛谷 P4171 [JSOI2010]满汉全席 解题报告
P4171 [JSOI2010]满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高 ...
- 洛谷P4171 [JSOI2010] 满汉全席 [2-SAT,Tarjan]
题目传送门 满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉 ...
- [洛谷P4171][JSOI2010]满汉全席
题目大意:有$n$个点,每个点可以选或不选,有$m$组约束,形如$a,u,b,v$,表示$u=a,v=b$中至少要满足一个条件,问是否存在一组解,多组询问 题解:$2-SAT$,感觉是板子题呀,最后判 ...
- 洛谷 P4171 [JSOI]满汉全席
洛谷 最近刚刚学的2-sat,就刷了这道裸题. 2-sat问题一般是用tarjan求的,当出现(x,y)或(!x,y)或(x,!y)三种选择时,我们可以把!x->y,!y->x连边. 然后 ...
- 洛谷P4047 [JSOI2010]部落划分题解
洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
随机推荐
- 黎活明8天快速掌握android视频教程--17_创建数据库与完成数据添删改查
1.我们首先来看下整个项目 项目也是采用mvc的框架 package dB; import android.content.Context; import android.database.sqlit ...
- Pytorch入门——手把手带你配置云服务器环境
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天这篇是Pytorch专题第一篇文章. 大家好,由于我最近自己在学习Pytorch框架的运用,并且也是为了响应许多读者的需求,推出了这个P ...
- 使用spring-test时报错
java.lang.NoClassDefFoundError: org/springframework/core/annotation/MergedAnnotations$SearchStrategy ...
- 部署rabbitMQ镜像集群实战测试
部署rabbitMQ镜像集群 版本信息 rabbit MQ: 3.8.5 Erlang: 官方建议最低21.3 推荐22.x 这里用的是23 环境准备 主机规划 主机 节点 172.16.14.3 磁 ...
- Spring 容器的初始化
读完这篇文章你将会收获到 了解到 Spring 容器初始化流程 ThreadLocal 在 Spring 中的最佳实践 面试中回答 Spring 容器初始化流程 引言 我们先从一个简单常见的代码入手分 ...
- Alink漫谈(十) :特征工程 之 特征哈希/标准化缩放
Alink漫谈(十) :特征工程之特征哈希/标准化缩放 目录 Alink漫谈(十) :特征工程之特征哈希/标准化缩放 0x00 摘要 0x01 相关概念 1.1 特征工程 1.2 特征缩放(Scali ...
- Python 简明教程 --- 22,Python 闭包与装饰器
微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 当你选择了一种语言,意味着你还选择了一组技术.一个社区. 目录 本节我们来介绍闭包与装饰器. 闭包与 ...
- css获取除第一个之外的子元素
在前端页面开发中,需要使用css来选择除了第一个之外的子元素,例如希望每个span之间能间隔一定的距离,单不能给每个span设置margin-left,这样会导致第一个span的前面有间距,影响排版. ...
- 如何科学地完成一场 AR 发布会?全在这份超细节活动策划 Xmind 里了
你们在哪个酒店搭的景? 5 月 28 日,网易智慧企业完成了一场实景人物拍摄 + 虚拟舞台渲染的 AR 线上见面会.非常有趣的是,在直播过程中,不止一位观众问我们,“你们是在哪个酒店搭的景?”.看来我 ...
- 007.Nginx虚拟主机
一 虚拟主机 1.1 虚拟主机概念 对于Nginx而言,每一个虚拟主机相当于一个在同一台服务器中却相互独立的站点,从而实现一台主机对外提供多个 web 服务,每个虚拟主机之间是独立的,互不影响的. 1 ...