[日常摸鱼]51nod1237-最大公约数之和V3-杜教筛
题意:求$\sum_{i=1}^n \sum_{j=1}^n gcd(i,j),n<=1e10$
之前刚好在UVA上也做过一个这样求和的题目,不过那个数据范围比较小,一开始用类似的方法
$ans=\sum_{i=1}^n \sum_{j=1}^i gcd(i,j)-\sum_{i=1}^n i$
先考虑化简$\sum_{i=1}^n gcd(i,n)$变成好求和的形式
$$\begin{aligned} \sum_{i=1}^n gcd(i,n) &=\sum_{i=1}^n \sum_{d=1}^n d*[gcd(i,n)=d]\\ &=\sum_{d=1}^n d \sum_{i=1}^n [gcd(i,n)=d] \\ &=\sum_{d=1}^n d \sum_{\frac{i}{d}=1}^{\frac{n}{d}} [gcd(\frac{i}{d},\frac{n}{d})=1]\\ &=\sum_{d|n} d*\phi(\frac{n}{d}) \end{aligned}$$
发现是$f(n)=n$和$g(n)=\phi(n)$的卷积,令$S(n)$表示$g$的前缀和,然后非常套路地,然后刚刚那一坨的前缀和就变成求$\sum_{i=1}^n i*S(\lfloor \frac{n}{i} \rfloor)$,欧拉函数前缀和直接用杜教筛算,然后分块求和
一开始取模一直写挂…orz
(有点懒直接用map存了)
#include<cstdio>
#include<cstring>
#include<map>
using namespace std; typedef long long lint; const lint MOD=1000000007;
const lint N=4000005;
const lint G=100005; lint n,tot,inv2;
lint pri[N],phi[N];
bool p[N];
map<lint,lint>mp; inline void init()
{
p[1]=1;phi[1]=1;
for(register lint i=2;i<N;i++)
{
if(!p[i])
{
pri[++tot]=i;
phi[i]=i-1;
}
for(register lint j=1;j<=tot&&i*pri[j]<N;j++)
{
lint t=i*pri[j];p[t]=1;
if(i%pri[j]==0){phi[t]=phi[i]*pri[j];break;}
phi[t]=phi[i]*(pri[j]-1);
}
}
for(register lint i=1;i<N;i++)phi[i]=(phi[i]+phi[i-1])%MOD;
} inline lint pow_mod(lint a,lint b,lint p)
{
lint res=1;
for(;b;b>>=1,a=(a*a)%p)if(b&1)res=(res*a)%p;
return res%p;
} inline lint sum(lint x)
{
return x%MOD*((x+1)%MOD)%MOD*inv2%MOD;
} inline lint calc_phi(lint x)
{
if(x<N)return phi[x];
if(mp.count(x))return mp[x];
lint res=sum(x),pos;
for(register lint i=2;i<=x;i=pos+1)
{
pos=x/(x/i);
res-=((pos-i+1)%MOD*calc_phi(x/i)%MOD)%MOD;
res=(res%MOD+MOD)%MOD;
}return mp[x]=res;
} inline lint calc_ans(lint x)
{
lint res=0,pos;
for(register lint i=1;i<=x;i=pos+1)
{
pos=x/(x/i);
res+=(sum(pos)-sum(i-1))%MOD*calc_phi(x/i)%MOD;
res=(res%MOD+MOD)%MOD;
}return res;
} int main()
{
init();inv2=pow_mod(2,MOD-2,MOD);
scanf("%lld",&n);lint ans=calc_ans(n)%MOD;
ans=(ans*2)%MOD-sum(n);ans=(ans%MOD+MOD)%MOD;
printf("%lld",ans);
return 0;
}
[日常摸鱼]51nod1237-最大公约数之和V3-杜教筛的更多相关文章
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51nod 237 最大公约数之和 V3 杜教筛
Code: #include <bits/stdc++.h> #include <tr1/unordered_map> #define setIO(s) freopen(s&q ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51 Nod 1238 最小公倍数之和 V3 杜教筛
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}l ...
- [51Nod1238]最小公倍数之和 V3[杜教筛]
题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- 51nod 1244 莫比乌斯函数之和 【杜教筛】
51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含 ...
- 51nod1237 最大公约数之和 V3
题意:求 解: 最后一步转化是因为phi * I = Id,故Id * miu = phi 第二步是反演,中间省略了几步... 然后就这样A了......最终式子是个整除分块,后面用杜教筛求一下phi ...
- [51nod1237] 最大公约数之和 V3(杜教筛)
题面 传送门 题解 我好像做过这题-- \[ \begin{align} ans &=\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\ &=\sum_{d=1}^ ...
随机推荐
- 下载器Folx如何实现排队下载功能
用户在下载多个文件时,当然会希望这些文件都能同时下载,以达到短时间内完成下载任务的目的.但另一方面来说,同时下载过多文件,会分散带宽资源,降低了每个文件的下载速度,从而导致下载时间的延长. 为了实现多 ...
- .NET可视化权限功能界面设计
权限功能是信息系统不可或缺的重要部分,一个优秀的权限设计可以使开发工作事半功倍,给使用者带来良好的使用体验. 企业做生意,都会聘请员工,若是员工数量较多,"权限管理"必不可少,这样 ...
- 【PUPPETEER】初探之获取元素文本值(三)
一.知识点 page.$eval(selector, pageFunction[, ...args]) page.$$eval(selector, pageFunction[, ...args]) i ...
- 基于gin的golang web开发:认证利器jwt
JSON Web Token(JWT)是一种很流行的跨域认证解决方案,JWT基于JSON可以在进行验证的同时附带身份信息,对于前后端分离项目很有帮助. eyJhbGciOiJIUzI1NiIsInR5 ...
- Alpha冲刺-第四次冲刺笔记
Alpha冲刺-冲刺笔记 这个作业属于哪个课程 https://edu.cnblogs.com/campus/fzzcxy/2018SE2 这个作业要求在哪里 https://edu.cnblogs. ...
- 整理一下dedecms的相关知识
dedecms更改数据库连接 文件 data/common.inc.php ------------------------------------------------------------ ...
- 最新小样本学习综述 A Survey on Few-Shot Learning | 四大模型Multitask Learning、Embedding Learning、External Memory…
目录 原文链接: 小样本学习与智能前沿 01 Multitask Learning 01.1 Parameter Sharing 01.2 Parameter Tying. 02 Embedding ...
- 【GDOI2014模拟】JZOJ2020年8月14日提高组 服务器
[GDOI2014模拟]JZOJ2020年8月14日提高组 服务器 题目 Time and Memory Limits Description 我们需要将一个文件复制到n个服务器上,这些服务器的编号为 ...
- 【GDOI2014模拟】JZOJ2020年8月14日T2 网格
[GDOI2014模拟]JZOJ2020年8月14日T2 网格 题目 Time and Memory Limits Description 某城市的街道呈网格状,左下角坐标为A(0, 0),右上角坐标 ...
- TextClip的list和search方法报错:UnicodeDecodeError: utf-8 codec canot decode byte 0xb7 in position 8
☞ ░ 前往老猿Python博文目录 ░ 由于moviepy对多语言环境支持存在一些问题,因此在执行TextClip.list('font')和TextClip.search('GB','font') ...