[日常摸鱼]51nod1237-最大公约数之和V3-杜教筛
题意:求$\sum_{i=1}^n \sum_{j=1}^n gcd(i,j),n<=1e10$
之前刚好在UVA上也做过一个这样求和的题目,不过那个数据范围比较小,一开始用类似的方法
$ans=\sum_{i=1}^n \sum_{j=1}^i gcd(i,j)-\sum_{i=1}^n i$
先考虑化简$\sum_{i=1}^n gcd(i,n)$变成好求和的形式
$$\begin{aligned} \sum_{i=1}^n gcd(i,n) &=\sum_{i=1}^n \sum_{d=1}^n d*[gcd(i,n)=d]\\ &=\sum_{d=1}^n d \sum_{i=1}^n [gcd(i,n)=d] \\ &=\sum_{d=1}^n d \sum_{\frac{i}{d}=1}^{\frac{n}{d}} [gcd(\frac{i}{d},\frac{n}{d})=1]\\ &=\sum_{d|n} d*\phi(\frac{n}{d}) \end{aligned}$$
发现是$f(n)=n$和$g(n)=\phi(n)$的卷积,令$S(n)$表示$g$的前缀和,然后非常套路地,然后刚刚那一坨的前缀和就变成求$\sum_{i=1}^n i*S(\lfloor \frac{n}{i} \rfloor)$,欧拉函数前缀和直接用杜教筛算,然后分块求和
一开始取模一直写挂…orz
(有点懒直接用map存了)
#include<cstdio>
#include<cstring>
#include<map>
using namespace std; typedef long long lint; const lint MOD=1000000007;
const lint N=4000005;
const lint G=100005; lint n,tot,inv2;
lint pri[N],phi[N];
bool p[N];
map<lint,lint>mp; inline void init()
{
p[1]=1;phi[1]=1;
for(register lint i=2;i<N;i++)
{
if(!p[i])
{
pri[++tot]=i;
phi[i]=i-1;
}
for(register lint j=1;j<=tot&&i*pri[j]<N;j++)
{
lint t=i*pri[j];p[t]=1;
if(i%pri[j]==0){phi[t]=phi[i]*pri[j];break;}
phi[t]=phi[i]*(pri[j]-1);
}
}
for(register lint i=1;i<N;i++)phi[i]=(phi[i]+phi[i-1])%MOD;
} inline lint pow_mod(lint a,lint b,lint p)
{
lint res=1;
for(;b;b>>=1,a=(a*a)%p)if(b&1)res=(res*a)%p;
return res%p;
} inline lint sum(lint x)
{
return x%MOD*((x+1)%MOD)%MOD*inv2%MOD;
} inline lint calc_phi(lint x)
{
if(x<N)return phi[x];
if(mp.count(x))return mp[x];
lint res=sum(x),pos;
for(register lint i=2;i<=x;i=pos+1)
{
pos=x/(x/i);
res-=((pos-i+1)%MOD*calc_phi(x/i)%MOD)%MOD;
res=(res%MOD+MOD)%MOD;
}return mp[x]=res;
} inline lint calc_ans(lint x)
{
lint res=0,pos;
for(register lint i=1;i<=x;i=pos+1)
{
pos=x/(x/i);
res+=(sum(pos)-sum(i-1))%MOD*calc_phi(x/i)%MOD;
res=(res%MOD+MOD)%MOD;
}return res;
} int main()
{
init();inv2=pow_mod(2,MOD-2,MOD);
scanf("%lld",&n);lint ans=calc_ans(n)%MOD;
ans=(ans*2)%MOD-sum(n);ans=(ans%MOD+MOD)%MOD;
printf("%lld",ans);
return 0;
}
[日常摸鱼]51nod1237-最大公约数之和V3-杜教筛的更多相关文章
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51nod 237 最大公约数之和 V3 杜教筛
Code: #include <bits/stdc++.h> #include <tr1/unordered_map> #define setIO(s) freopen(s&q ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51 Nod 1238 最小公倍数之和 V3 杜教筛
题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}l ...
- [51Nod1238]最小公倍数之和 V3[杜教筛]
题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...
- 【51nod】1238 最小公倍数之和 V3 杜教筛
[题意]给定n,求Σi=1~nΣj=1~n lcm(i,j),n<=10^10. [算法]杜教筛 [题解]就因为写了这个非常规写法,我折腾了3天…… $$ans=\sum_{i=1}^{n}\s ...
- 51nod 1244 莫比乌斯函数之和 【杜教筛】
51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含 ...
- 51nod1237 最大公约数之和 V3
题意:求 解: 最后一步转化是因为phi * I = Id,故Id * miu = phi 第二步是反演,中间省略了几步... 然后就这样A了......最终式子是个整除分块,后面用杜教筛求一下phi ...
- [51nod1237] 最大公约数之和 V3(杜教筛)
题面 传送门 题解 我好像做过这题-- \[ \begin{align} ans &=\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\ &=\sum_{d=1}^ ...
随机推荐
- 详细!Mybatis-plus常用API全套教程,我就不信你看完还不懂!
前言 官网:Mybatis-plus官方文档 简化 MyBatis ! 创建数据库 数据库名为mybatis_plus 创建表 创建user表 DROP TABLE IF EXISTS user; C ...
- 关于GoldWave为Vegas制作音频交叉淡化特效的教程分享
在Vegas里对音频交叉淡化的处理,是通过将两段音频交叠.调整交叠部分的音量.选取交叉淡化类型这三步来实现的,许多步骤是在音频轨道拖动音量线来实现的,操作上不够灵敏精细.其实,单就音频的交叉淡化处理, ...
- 有什么OCR文字识别软件好用?
OCR文字识别是指:对文本资料进行扫描,然后对图像文件进行分析处理,最后获取文字以及版面信息的过程.对于许多学生党而言,一款好用的文字识别软件,能节省很多抄笔记的时间,而对于许多处理文字内容的白领而言 ...
- pytest的setup和teardown
学过unittest的setup和teardown,前置和后置执行功能.pytest也有此功能并且功能更强大,今天就来学习一下吧. 用例运行级别: 模块级(setup_module/teardown_ ...
- Appium上下文和H5测试(二)
坚持原创输出,点击蓝字关注我吧 作者:清菡 博客:oschina.云+社区.知乎等各大平台都有. 文章总览图 一.往期回顾 loc='new UiSelector().text("全程班&q ...
- Spring Boot 2.4.0正式发布,全新的配置文件加载机制(不向下兼容)
千里之行,始于足下.关注公众号[BAT的乌托邦],有Spring技术栈.MyBatis.JVM.中间件等小而美的原创专栏供以免费学习.分享.成长,拒绝浅尝辄止.本文已被 https://www.you ...
- 思维导图学 Kotlin
前言 最近做了<Kotlin实战>的思维导图笔记,Kotlin真香-- 目录 基础 函数 类.对象 λ表达式 类型 约定 高阶函数.泛型 公众号 coding 笔记.点滴记录,以后的文章也 ...
- java46
1.迭代器遍历 import java.util.ArrayList; import java.util.Collection; import java.util.Iterator; public c ...
- Python to Exe By Install PyInstaller on Win7-64bit
本文主要记录为史振华在尝试转换PY文件为EXE文件过程中各种疑惑和最终解决方法,尝试了PYTHON 2.7/3.5/3.6及其相关依赖pywin32-222.win32/pywin32-222.win ...
- 20190814_tomcat配置项目的错误页
1. 打开项目中的web.xml, 注意不是tomcat的web.xml; 一般是在项目的 WEB-INF目录下, 然后加上下面的语句 <error-page> <error-cod ...