Redis高可用——副本机制
为实现Redis服务的高可用,Redis官方为我们提供了副本机制(或称主从复制)和哨兵机制。副本机制使得当Master服务器宕机后,我们可以将其中一台Slave切换为新的Master服务器。哨兵机制则实现了自动发现Master服务器宕机,并自动进行主从切换。本文主要介绍副本机制(Replication),包括副本机制的概念、用法及其底层实现。下一篇文章我们再介绍哨兵机制。
从技术实现角度来看,Redis通过主从复制的方式来实现副本机制,所以下面介绍技术实现时,我们采用“主从复制”这个词。
概念
高可用的作用是为了解决服务器宕机带来的服务不可用问题。对于Redis缓存服务器而言,解决方法就是在多台计算机上存储缓存数据,即:副本机制。当客户端往缓存服务器(通常称为Master服务器)写数据时,其他缓存服务器(通常称为Slave服务器)自动同步,如下图所示:

上图是最简单的主从集群结构,只有一个Master节点和一个Slave节点。复杂一点的话,我们也可以配置多个Slave节点。
配置
Redis的主从复制集群配置非常简单,Master节点只需要改两个地方的配置,Slave节点只需要改一个配置项即可。这里,我们以上图的最简单的主从结构为例,具体修改如下:
Master节点的配置文件改动
修改之前:
bind 127.0.0.1
protected-mode yes
修改之后:
# bind 127.0.0.1
protected-mode no
即:去掉保护模式,并且将绑定的IP地址注释掉。
- Slave节点的配置文件改动
添加一行:
# replicaof <masterip> <masterport>
replicaof 192.168.1.9 6379
即:此Slave服务器待同步的Master服务器的IP地址为192.168.1.9,端口号为6379(见上图)。接下来我们来学习一下,Redis底层是如何实现主从复制的。
同步方式
具体讲解代码实现之前,先来了解一下两种主从同步方式。
完全同步(Full Sync):所有缓存数据同步到
Slave机器。如下图所示,Master机器从rdb文件(Redis的持久化文件)中读取字节流发送到Slave机器,知道发完为止。Slave机器根据发送过来的数据执行命令。
部分同步(Partial Sync):客户端每发送一条Redis命令到Master,Master执行这条命令后,会转发到Slave机器。如下图所示,Slave接收到命令后,和Master一样,会执行一遍命令流程,从而达到同步命令。这种方式每次都是同步命令,所以称为部分同步,也可以理解为增量式的同步。

起点
上一篇文章我们介绍了事件机制,我们已经看到,系统启动时,会注册一个时间事件,其回调函数为serverCron,这个函数默认每秒执行10次。这个函数中会调用——replicationCron()函数——这就是主从复制的起点了:
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
run_with_period(1000) replicationCron();
}
从这里开始,主从同步的会依次经历主从握手、完全同步以及部分同步三个阶段,下面我们分三个部分具体阐述。
主从握手
我们知道TCP传输数据前会执行三次握手来建立连接,Redis的主从服务器之间也会执行一段握手操作,目的是执行基本的验证逻辑,并配置必要的同步参数。这个握手过程涉及的数据传递如下图所示(代码具体实现参见replication.c的syncWithMaster()函数):

上图左侧所示为握手过程中Slave服务器状态变化,右侧为握手过程的消息传输。可以看到,主从复制的过程是由Slave发起的,涉及五个来回,十条消息,可分以下三个阶段:
PING-PONG阶段:这一阶段类似于打电话开头密码认证阶段:
Slave发送密码到master进行认证。如果没有配置master密码的话,则会跳过这一步。可能有人会问,认证阶段有什么意义?如果``master服务器配置了访问需要密码,而Slave服务器因为没有配置master`的密码而跳过认证阶段,则会导致后续命令会执行失败——返回没有验证错误,具体如下:int processCommand(client *c) {
if (server.requirepass && !c->authenticated && c->cmd->proc != authCommand)
{
flagTransaction(c);
addReply(c,shared.noautherr);
return C_OK;
}
}
参数配置阶段:最后三条以
replconf开头的命令,用于告诉master服务器主从同步相关的参数——IP地址、端口以及支持的服务。
经过以上握手步骤之后,Slave服务器进入主从复制阶段。Slave服务器首先尝试进行部分同步,即发送psync命令到Master服务器,如上图红线所示。如果Master服务器不支持或认为不满足部分同步的条件,则告诉Slave服务器需要执行完全同步。所以,接下来我们也是先阐述部分同步,再阐述完全同步。
部分同步
刚才已经说了,部分同步下,Master服务器在执行命令的同时,会将命令广播到Slave服务器,如下所示:
void readQueryFromClient(aeEventLoop *el, int fd, void *privdata, int mask) {
processInputBufferAndReplicate(c);
}
void processInputBufferAndReplicate(client *c) {
if (!(c->flags & CLIENT_MASTER)) {
processInputBuffer(c);
} else {
size_t prev_offset = c->reploff;
processInputBuffer(c);
size_t applied = c->reploff - prev_offset;
if (applied) {
replicationFeedSlavesFromMasterStream(server.slaves,
c->pending_querybuf, applied);
sdsrange(c->pending_querybuf,applied,-1);
}
}
}
void replicationFeedSlavesFromMasterStream(list *slaves, char *buf, size_t buflen) {
listNode *ln;
listIter li;
if (server.repl_backlog) feedReplicationBacklog(buf,buflen);
listRewind(slaves,&li);
while((ln = listNext(&li))) {
client *slave = ln->value;
/* Don't feed slaves that are still waiting for BGSAVE to start */
if (slave->replstate == SLAVE_STATE_WAIT_BGSAVE_START) continue;
addReplyString(slave,buf,buflen);
}
}
readQueryFromClient()这个函数我们应该很熟悉了,上一篇文章中我们知道,这就是和客户端建立连接后,在客户端socket上注册的回调函数。此函数会调用processInputBufferAndReplicate,进而调用replicationFeedSlavesFromMasterStream,这就是向Slave服务器推送命令字节流的函数了。通过代码可以看到,该函数会遍历所有的Slave服务器,并逐个向Slave服务器发送命令字节流。
那么,接下来的疑问便是server.slaves数组是怎么得到的?这就是上一节最后说到的psync命令要做的事了,psync命令的处理函数syncCommand有如下逻辑:
/* SYNC and PSYNC command implemenation. */
void syncCommand(client *c) {
if (!strcasecmp(c->argv[0]->ptr,"psync")) {
if (masterTryPartialResynchronization(c) == C_OK) {
server.stat_sync_partial_ok++;
return; /* No full resync needed, return. */
}
}
}
int masterTryPartialResynchronization(client *c) {
c->flags |= CLIENT_SLAVE;
c->replstate = SLAVE_STATE_ONLINE;
c->repl_ack_time = server.unixtime;
c->repl_put_online_on_ack = 0;
listAddNodeTail(server.slaves,c);
}
上述两个函数均是截取我们关心的部分,应该不用做过多解释了。
完全同步
执行完全同步判断条件
有了部分同步就能实现主从同步了吗?显然不能,部分同步之前,Master服务器上执行的命令需要同步到Slave服务器,这就是完全同步发挥作用的地方了。讲解完全同步的实现之前,我们来看看Redis是怎么判断是否需要完全同步的?下面是判断是否需要完全同步所需的三组状态数据:
replid和reploff:第一个参数replid是Master服务器的id,第二个参数reploff为当前Slave服务器复制的偏移量。Slave服务器发起部分同步时,一般会带上这两个参数,即:psync replid reploff。replid2和second_replid_offset: 这两个变量用于主从切换的情形。主从切换的时候,Slave服务器会变成Master服务器,这两个变量分别用于该Slave服务器同步的Master服务器的id和同步的偏移量。repl_backlog、repl_back_off和repl_backlog_histlen:Master服务器的后台缓冲区、后台缓冲区偏移及长度。
下面代码就是Master服务器判断是否需要完全同步的逻辑:
int masterTryPartialResynchronization(client *c) {
if (getLongLongFromObjectOrReply(c,c->argv[2],&psync_offset,NULL) !=
C_OK) goto need_full_resync;
if (strcasecmp(master_replid, server.replid) &&
(strcasecmp(master_replid, server.replid2) ||
psync_offset > server.second_replid_offset))
{
goto need_full_resync;
}
if (!server.repl_backlog ||
psync_offset < server.repl_backlog_off ||
psync_offset > (server.repl_backlog_off + server.repl_backlog_histlen))
{
goto need_full_resync;
}
}
- 第一个判断表示无法解析
psync命令的参数reploff时,需要进行完全同步。原因:如果没有这个参数,我们就无法知道此前Slave服务器同步的是不是本Master服务器同步的; - 第二个判断,分为两个子判断:
Slave服务器发送过来的replid和当前Master服务器的replid不一致,并且Slave服务器发送过来的replid和当前Master服务器的replid2不一致,需要进行完全同步;Slave服务器发送过来的replid和当前Master服务器的replid不一致,并且Slave服务器请求的同步速度快于Master服务器;
- 第三个判断表示
Master服务器是否有后台日志缓冲区,如果没有,则需要进行完全同步;如果有,则继续判断待同步的偏移是否在后台日志缓冲区的范围内,如果不在后台日志缓冲区的范围内,则需要进行完全同步。换句话说,只有Master服务器有后台日志缓冲区,并且Slave服务器发过来的同步偏移量在后台日志缓冲区记录的范围之内,才能进行部分同步。
完全同步代码实现
完全同步的实现是比较简单,下面来看看Master服务器和Slave服务器所需要执行的逻辑。
Master服务器端:加载并读取RDB文件,写入Slave客户端的套接字,具体实现逻辑如下(提取主要部分):
void sendBulkToSlave(aeEventLoop *el, int fd, void *privdata, int mask) {
if (slave->replpreamble) {
nwritten = write(fd,slave->replpreamble,sdslen(slave->replpreamble));
}
buflen = read(slave->repldbfd,buf,PROTO_IOBUF_LEN);
nwritten = write(fd,buf,buflen);
slave->repldboff += nwritten;
if (slave->repldboff == slave->repldbsize) {
close(slave->repldbfd);
slave->repldbfd = -1;
aeDeleteFileEvent(server.el,slave->fd,AE_WRITABLE);
putSlaveOnline(slave);
}
}
上面代码最后一段逻辑表明:完全同步完成后,Slave服务器成为部分同步的客户端被加入到Master服务器的server.slaves中。结合前面对部分同步的分析,此后Slave就开始了部分同步的过程,通过增量式来实现主从同步。
Slave服务器端:读取来自服务器发过来的RDB字节流,保存到本地的RDB文件。字节流读取完毕后,清空Slave服务器上的所有数据,然后重新加载RDB文件,从而实现主从完全同步。具体实现逻辑如下(提取主要部分):
void readSyncBulkPayload(aeEventLoop *el, int fd, void *privdata, int mask) {
if (server.repl_transfer_size == -1) {
syncReadLine(fd,buf,1024,server.repl_syncio_timeout*1000);
server.repl_transfer_size = strtol(buf+1,NULL,10);
serverLog(LL_NOTICE,
"MASTER <-> REPLICA sync: receiving %lld bytes from master",
(long long) server.repl_transfer_size);
return;
}
left = server.repl_transfer_size - server.repl_transfer_read;
readlen = (left < (signed)sizeof(buf)) ? left : (signed)sizeof(buf);
nread = read(fd,buf,readlen);
write(server.repl_transfer_fd,buf,nread);
/* Check if the transfer is now complete */
if (server.repl_transfer_read == server.repl_transfer_size)
eof_reached = 1;
if (eof_reached) {
rename(server.repl_transfer_tmpfile,server.rdb_filename);
emptyDb(
-1,
server.repl_slave_lazy_flush ? EMPTYDB_ASYNC : EMPTYDB_NO_FLAGS,
replicationEmptyDbCallback);
rdbLoad(server.rdb_filename,&rsi);
}
}
需要指出的是,Slave服务器读取到RDB字节流后,先写入一个临时文件中server.repl_transfer_tmpfile中,等同步完成后,将临时文件重命名为正式的RDB文件server.rdb_filename。
Redis高可用——副本机制的更多相关文章
- Redis高可用详解:持久化技术及方案选择
文章摘自:https://www.cnblogs.com/kismetv/p/9137897.html 前言 在上一篇文章中,介绍了Redis的内存模型,从这篇文章开始,将依次介绍Redis高可用相关 ...
- Redis高可用详解:持久化技术及方案选择 (推荐)--转载自编程迷思博客www.cnblogs.com/kismetv/p/8654978.html
一.Redis高可用概述 在介绍Redis高可用之前,先说明一下在Redis的语境中高可用的含义. 我们知道,在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常 ...
- Redis 高可用篇:你管这叫主从架构数据同步原理?
在<Redis 核心篇:唯快不破的秘密>中,「码哥」揭秘了 Redis 五大数据类型底层的数据结构.IO 模型.线程模型.渐进式 rehash 掌握了 Redis 快的本质原因. 接着,在 ...
- Keepalived+Redis高可用部署(第二版)
更新 20150625 脚本由5个减少为4个,sh脚本指令做了精简. 修改了另外3个脚本,在日志里增加了日期显示. 新增redis数据类型,持久化,主从同步简介. 新增hiredis简介. 新增c语言 ...
- Redis 高可用集群
Redis 高可用集群 Redis 的集群主从模型是一种高可用的集群架构.本章主要内容有:高可用集群的搭建,Jedis连接集群,新增集群节点,删除集群节点,其他配置补充说明. 高可用集群搭建 集群(c ...
- sentinel监控redis高可用集群(一)
一.首先配置redis的主从同步集群. 1.主库的配置文件不用修改,从库的配置文件只需增加一行,说明主库的IP端口.如果需要验证的,也要加多一行,认证密码. slaveof 192.168.20.26 ...
- 如何构建 Redis 高可用架构?
温国兵 民工哥技术之路 今天 1 .题记 Redis 是一个开源的使用 ANSI C 语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value 数据库,并提供多种语言的 API. 如今,互 ...
- Redis高可用集群-哨兵模式(Redis-Sentinel)搭建配置教程【Windows环境】
No cross,no crown . 不经历风雨,怎么见彩虹. Redis哨兵模式,用现在流行的话可以说就是一个"哨兵机器人",给"哨兵机器人"进行相应的配置 ...
- Redis高可用
redis高可用只要在于三个方面 主从复制 哨兵机制 集群机制 主从复制 主从复制作用: 1.数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式.2.故障恢复:当主节点出现问题时,可 ...
随机推荐
- PHP password_get_info() 函数
password_get_info() 函数用于返回指定散列(hash)的相关信息. PHP 版本要求: PHP 5 >= 5.5.0, PHP 7高佣联盟 www.cgewang.com 语法 ...
- LVS-DR:搭建HTTP和HTTPS负载均衡集群
目录 LVS-DR实战:搭建HTTP和HTTPS负载均衡集群 1. 搭建lvs-dr模式的http负载集群 1.1 LVS上配置IP 1.2 RS上配置arp内核参数 1.3 RS上配置VIP 1.4 ...
- 云计算&存储测试:FIO工具入门与实战
一.关于FIO 1.1 简介 FIO是一个开源的I/O压力测试工具,主要是用来测试磁盘的IO性能,也可测试cpu,nic的IO性能.它可以支持13种不同的I/O引擎,包括:sync,mmap, lib ...
- OpenCV计算机视觉编程攻略(第三版)源码
去年买了这本OpenCV的书,感觉还不错,但是书上没有给出下载源码的地方,在网上找了下,还好找到了,现在分享给大家: 链接: https://pan.baidu.com/s/1IqAay1IZ8g-h ...
- puppet master/agent
puppet master/agent 配置 安装 master: yum install puppet-server agent: yum install puppet 自动签名 puppet的ma ...
- Docker 搭建 SonarQube
Docker 搭建 SonarQube Docker 搭建 SonarQube 步骤 创建项目目录 mkdir -p /usr/local/sonarqube && cd /usr/l ...
- 咕咕咕清单(SCOI2020前)
本篇博客已停更 本篇博客已停更 本篇博客已停更 吐槽区: 2020.04.15: 从今天起我做过的题目都记录一下,想不想写题解就另说了 2020.04.17: 写了两天之后真实的发现这是博主的摸鱼日记 ...
- Java Redis系列2 (redis的安装与使用+redis持久化的实现))
Java Redis系列2 (redis的安装与使用+redis持久化的实现) 什么是Redis? Redis是用C语言开发的一个开源的高性能键值对(key-value)数据库,官方提供测试数据,50 ...
- 全面介绍eBPF-概念
全面介绍eBPF-概念 前面介绍了BCC可观测性和BCC网络,但对底层使用的eBPF的介绍相对较少,且官方欠缺对网络方面的介绍.下面对eBPF进行全面介绍. 目录 全面介绍eBPF-概念 BPF概述 ...
- 一篇看懂Socket开发
Socket[套接字]是什么,对于这个问题,初次接触的开发人员一般以为他只是一个通讯工具. Socket接口是TCP/IP网络的API,Socket接口定义了许多函数或例程,程序员可以用它们来开发 T ...