一、题目

点此看题

二、解法

话说老师给的课件是错的啊,把我坑了好久,我手玩样例才玩出来,最后只能去看洛谷题解了。

本题是树是用一个括号序列给出的,你要知道的是:( 代表递归下去到一个新节点,) 表示回溯到当前节点。首先这个括号序列的每一个区间都代表树上的一条路径,那么我们把能配对的括号消掉后剩下的是这种形式:)))((( ,因为能匹配的括号相当于回溯回来了,而剩下的就表示先回溯再往下走的路径。所以剩下的长度就是路径的长度,我们想要求出最长的就是直径

消去的过程好像不好算,我们可以把他转化为把原序列划分成两部分,( 看作 \(1\) ,) 看作 \(-1\),让后面的权值 \(-\) 前面的权值最大化即是路径长度。这种做法为什么能成立呢?因为 () 是不应该有贡献的,这种做法可以确保不会从 () 的中间划开,那么 () 的贡献就成为了 \(0\),那序列自然就变成了 )))((( 的形式,我们一定会从中间划开。但是作者确实不知道是怎么想到的,给括号赋值的思路值得学习。

但是这个东西可以维护?一般来说这种看似难维护但是可合并的东西我们考虑线段树,我们要维护下面几个值:

  • 区间权值和 \(sum\)
  • 区间最大的前缀和 \(lma\)
  • 区间最小的后缀和 \(rmi\)
  • 区间前缀的最佳划分答案 \(ld\)
  • 区间后缀的最佳划分答案 \(rd\)
  • 整个区间的划分答案 \(mad\)
  • 区间的某个区间划分答案(这个是真正的答案)\(mx\)

\(1-3\) 是很好维护的,我把 \(4\) 的维护方式讲一讲,剩下的就可以自己推了。分为 \(3\) 种情况:直接用左儿子的最优前缀;划分点在右儿子,用 \(ld[rs]-sum[ls]\) ;划分点在左儿子,用 \(mad[ls]+lma[rs]\)

真是毒瘤题啊,感觉思维和代码都很难的,如果 \(1-7\) 的转移不会的看看代码,结合定义理解吧!

#include <cstdio>
#include <iostream>
using namespace std;
const int M = 200005;
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,m,a[M];char s[M];
int sum[4*M],lma[4*M],rmi[4*M],ld[4*M],rd[4*M],mad[4*M],mx[4*M];
void up(int x)
{
int i1=x<<1,i2=x<<1|1;
sum[x]=sum[i1]+sum[i2];
lma[x]=max(lma[i1],sum[i1]+lma[i2]);
rmi[x]=min(rmi[i2],sum[i2]+rmi[i1]);
ld[x]=max(ld[i1],max(ld[i2]-sum[i1],mad[i1]+lma[i2]));
rd[x]=max(rd[i2],max(rd[i1]+sum[i2],mad[i2]-rmi[i1]));
mad[x]=max(mad[i1]+sum[i2],mad[i2]-sum[i1]);
mx[x]=max(max(mx[i1],mx[i2]),max(ld[i2]-rmi[i1],rd[i1]+lma[i2]));
}
void ins(int i,int l,int r,int id,int x)
{
if(l==r)
{
sum[i]=x;
lma[i]=max(x,0);
rmi[i]=min(x,0);
ld[i]=rd[i]=mad[i]=mx[i]=1;
return ;
}
int mid=(l+r)>>1;
if(mid>=id) ins(i<<1,l,mid,id,x);
else ins(i<<1|1,mid+1,r,id,x);
up(i);
}
signed main()
{
n=2*read()-2;m=read();
scanf("%s",s+1);
for(int i=1;i<=n;i++)
{
if(s[i]=='(') a[i]=1;
else a[i]=-1;
ins(1,1,n,i,a[i]);
}
printf("%d\n",mx[1]);
for(int i=1;i<=m;i++)
{
int x=read(),y=read();
if(a[x]==a[y]) continue;
swap(a[x],a[y]);
ins(1,1,n,x,a[x]);
ins(1,1,n,y,a[y]);
printf("%d\n",mx[1]);
}
}

CF1149C Tree Generator™的更多相关文章

  1. Tree Generator™ CodeForces - 1149C (线段树,括号序列)

    大意: 给定括号序列, 每次询问交换两个括号, 求括号树的直径. 用[ZJOI2007]捉迷藏的方法维护即可. #include <iostream> #include <algor ...

  2. Codeforces 1149C - Tree Generator™(线段树+转化+标记维护)

    Codeforces 题目传送门 & 洛谷题目传送门 首先考虑这个所谓的"括号树"与直径的本质是什么.考虑括号树上两点 \(x,y\),我们不妨用一个"DFS&q ...

  3. Codeforces 739C - Alyona and towers(线段树)

    Codeforces 题目传送门 & 洛谷题目传送门 可能有人会问我为什么为这道 *2500 的 D1C 写题解,我觉得大概是想要在写题解数量上 dd ycx 吧,因为 ycx 到目前为止写了 ...

  4. Teach Yourself Scheme in Fixnum Days 13 Jump跳转

    Jumps One of the signal features of Scheme is its support for jumps or nonlocal control. Specificall ...

  5. THREE.JS + Blender(obj、mtl加载代码)

    2016-11-04 09:23:17 THREE.REVISION "81dev" Blender     "2.78" 1.加载OBJ.MTL文件 // T ...

  6. OS模块的常用内置方法

    chdir 修改当前工作目录到指定目录 Change the current working directory to the specified path. chmod 修改一个文件的访问权限 Ch ...

  7. codeforces选做

    收录了最近本人完成的一部分codeforces习题,不定期更新 codeforces 1132E Knapsack 注意到如果只使用某一种物品,那么这八种物品可以达到的最小相同重量为\(840\) 故 ...

  8. os.walk() 目录生成器

    目录生成器 Directory tree generator.! walk() 是 generator,直接print() 为  <generator object walk at 0x0000 ...

  9. python:OS模块

    r"""OS routines for NT or Posix depending on what system we're on. This exports: - al ...

随机推荐

  1. Ansible 自动化部署

    参考 BLOG: Ansible 系列模块 Ansible 部署与使用 Ansible Book Ansible Ansible 是一个自动化统一配置管理工具,自动化主要体现在 Ansible 集成了 ...

  2. Redis 的缓存淘汰机制(Eviction)

    本文从源码层面分析了 redis 的缓存淘汰机制,并在文章末尾描述使用 Java 实现的思路,以供参考. 相关配置 为了适配用作缓存的场景,redis 支持缓存淘汰(eviction)并提供相应的了配 ...

  3. Socket 编程简介

    Socket又称"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求,使主机间或者一台计算机上的进程间可以通讯. 本章节我们为大家接收 Perl ...

  4. spring-cloud-netflix-eureka-server

    一.构建springcloud父pom工程,管理版本 pom.xml <?xml version="1.0" encoding="UTF-8"?> ...

  5. Spring应用上下文生命周期

    Spring应用上下文生命周期整体分成四个阶段 ConfigurableApplicationContext#refresh,加载或者刷新持久化配置 ConfigurableApplicationCo ...

  6. CSS3实现 垂直居中 水平居中 的技巧

    1 1 1 How To Center Anything With CSS Front End posted by Code My Views 1 Recently, we took a dive i ...

  7. 前端 vs 后端

    前端 vs 后端 前端与后端: 有什么区别? 前端和后端是计算机行业中最常用的两个术语. 在某种程度上,它们成了流行语. 它们决定了您作为软件开发人员所从事的工作类型,所使用的技术以及所获得的收入. ...

  8. vue & template & v-else & v-for bug

    vue & template & v-else & v-for bug nested table bug https://codepen.io/xgqfrms/pen/wvaG ...

  9. Nestjs 验证对象数组

    route @Patch(':id') patch(@Param('id') id: string, @Body() removeEssayDto: RemoveEssayDto) { return ...

  10. django学习-27.admin管理后台里:对列表展示页面的数据展示进行相关优化

    目录结构 1.前言 2.完整的操作步骤 2.1.第一步:查看ModelAdmin类和BaseModelAdmin类的源码 2.2.第二步:查看表animal对应的列表展示页面默认的数据展示 2.3.第 ...