背景

又是一个周末一天一天的过的好快,今天的任务干啥呢,索引总结一些mr吧,因为前两天有面试问过我?我当时也是简单说了一下,毕竟现在写mr程序的应该很少很少了,废话不说了,结合官网和自己理解写起。

官网 https://hadoop.apache.org/docs/r3.3.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

简单分析

一个mr作业通常数据会被切割成多个数据块通过map任务来并行处理,就是说我们在处理文件的时候,首次我们写入文件会被分割成多个块,hdfs文件设计支持的语义 write-once-read-more,block块是128m默认 https://hadoop.apache.org/docs/r3.3.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html Data Blocks 位置。然后在我们读取的时候也就是提交mr 作业后namenode会根据元数据管理然后从不同的datanode得知数据位置,从而进行读取。mr框架包含一个单独的master ResouceManager,每个集群结点一个工作NodeManager,每个应用一个MRAppMaster。

Input 和output,接受《key,value》最后落地《key,value》形式,需要实现Writetable接口,还要实现WritebaleCompare接口因为要对比排序。

public class WordCount {

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,

Context context

) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

Mapper

我们会接受<key,value>对,hdfs生产map任务对每一个Inputsplit通过Inputformat在我们的作业中。

mapper设置通过Job.setMapperClass(Class) 方法,我们实现mapper接口对应就可以在map中写内容了。如果向清理内容可以实现cleanUp方法。这个方法 备注  Called once at the end of the task.也就是说在task结束后会触发一次。

输出对并不一样要跟输入对类型保持一致,一个输入对可能会产生一个或者多个输出对。输出通过context的write方法收集。

应用可以通过Counter 来上报统计,上下文中可以找到Counter counter = context.getCounter(MRJobConfig.JOB_NAME, MRJobConfig.JOB_NAME);

所有的结果通过key来进行发放传递给reduce然后落地结果。用户也可以通过比较器来进行指定分组。

Job.setGroupingComparatorClass(Class).

mapper的输出会分区到reduce中,然后数量与reduce的任务数量一致,也可以通过实现自定义Partitioner来进行分配。

combiner也是中间优化的一部分,通过ob.setCombinerClass(Class) 来设置combiner类,在发送到reduce之前在减少数量从而提高性能。数据结果如何存储什么格式,可以通过设置压缩形式来存储通过配置。

多少个Mapper

mapper的个数通常是通过输入文件大小block数量来决定的。正常的并行度水平对于每个结点来看是10-100之间,离线跑hql脚本一般设置过大会导致占用资源过多,其他任务排队情况导致任务从而延迟,或者浪费资源。例子:如果你的输入文件大小是10T,那么hdfs默认块是128M,那么你就会有82,000个map数量,这个就需要通过配置文件来设置map 的大小了。

Reducer

通过mapper处理完以后发送到reduce端的对,reducer会对这些对再进行处理使得这个以key为分组的对集合更小。

Job.setNumReduceTasks(int) 设置recude个数Job.setReducerClass(Class) 设置reduce的执行类

reduce有三个阶段:shuffle, sort and reduce.翻译出来感觉不太好。

Shuffle

这个阶段就是通过mapper的输出结果数据进行一次分组partition

Sort

怎么排序呢,就是mapper阶段的task,输出会是以key分组的,然后相同的key再进行merge 合并排序,在这个阶段。

Secondary Sort

二次排序,可能用户对于之前的key排序不满了,希望再次修改进行重新排序分组那么通过设置Job.setSortComparatorClass(Class).Job.setGroupingComparatorClass(Class)以达到目的。

Reduce

最后一个阶段reduce,减少?这么翻译总感觉不够精准那就直接叫reduce吧。以key分组到达一个reduce,拿到数据Context.write(WritableComparable, Writable)写到文件系统搞定完毕。reduce的输出是没有排序的。

多少个reduce

一个合理的数量应该是0.95或者是1.75 乘以 结点数量 * 每个结点最大的容量数。

0.95启动更快,1.75负载更好。reduce数量多了对集群是个开销,但是对于提升成功率更好。因子小于整数的目的也是为了能够留有余地。

Reducer NONE

reducer设置为空的或者0都可以的。有些任务不要进行对map结果进行排序等操作,就可以直接写入到文件系统。FileOutputFormat.setOutputPath(Job, Path)

Partitioner

分区以key为主键,对map结果partiton,按照哈希的函数方式,数量与reduce任务一样。

https://hadoop.apache.org/docs/r3.3.0/api/org/apache/hadoop/mapreduce/lib/partition/HashPartitioner.html HashPartitioner是默认的哈希分区方式。

Counter

一个统计工具,上文也说过了,可以通过上下文拿到。

Task Execution & Environment

任务的执行和环境,MRAppMaster执行 mr任务的时候 map 和reduce都是作为一个进程在一个分开的jvm中执行。

然后我们可以通过配置设置一些jvm的参数,堆栈大小,gc日志,这些我们可以观察到任务的运行情况等。

Job Submission and Monitoring

任务提交和监控说一下,步骤:

1、输入输出检查

2、计算输入文件大小

3、设置分布式缓存信息如果有必要

4、然后就是上传jar 和配置 到mr 的执行目录下

5、提交到ResourceManager上然后监控它的状态

Job.submit() : 作业提交到集群立即返回.

Job.waitForCompletion(boolean) : 作业提交到集群然后等待完成

  Memory Management Map Parameters Shuffle/Reduce Parameters Configured Parameters不介绍上了,主要是mr的运行原理说一下,剩下的可以通过开头的mr连接了解到,官网这一篇还是有很多东西的,后面没有说到的输入输出文件类,split类,分布式缓存,提交debug脚本查看日志等等,大家都可以去看一下,最后是个wordcount案例应用了这些特点。

  看到的小伙伴有什么工作机会可以跟我联系目前在考虑新机会,多谢!

            Growth depends on cycles

mr原理简单分析的更多相关文章

  1. wp7之换肤原理简单分析

    wp7之换肤原理简单分析 纠结很久...感觉勉强过得去啦.还望各位大牛指点江山 百度找到这篇参考文章http://www.cnblogs.com/sonyye/archive/2012/03/12/2 ...

  2. AbstractRoutingDataSource 实现动态数据源切换原理简单分析

    AbstractRoutingDataSource 实现动态数据源切换原理简单分析 写在前面,项目中用到了动态数据源切换,记录一下其运行机制. 代码展示 下面列出一些关键代码,后续分析会用到 数据配置 ...

  3. DWM1000 测距原理简单分析 之 SS-TWR

    蓝点DWM1000 模块已经打样测试完毕,有兴趣的可以申请购买了,更多信息参见 蓝点论坛 正文: DWM1000 超宽带测距,使用的TOF(time of fly) 的方式,也就是计算无线电磁波传输时 ...

  4. DWM1000 测距原理简单分析 之 SS-TWR代码分析2 -- [蓝点无限]

    蓝点DWM1000 模块已经打样测试完毕,有兴趣的可以申请购买了,更多信息参见 蓝点论坛 正文: 首先将SS 原理介绍中的图片拿过来,将图片印在脑海里. 对于DeviceA 和 DeviceB来说,初 ...

  5. DWM1000 测距原理简单分析 之 SS-TWR代码分析1 -- [蓝点无限]

    蓝点DWM1000 模块已经打样测试完毕,有兴趣的可以申请购买了,更多信息参见 蓝点论坛 正文: 这一篇内容主要是通过官方源码理解SS-TWR 细节 代码下载链接:https://download.c ...

  6. Spring整合Mybatis原理简单分析

    <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean" ...

  7. jquery原理的简单分析,让你扒开jquery的小外套。

    引言 最近LZ还在消化系统原理的第三章,因此这部分内容LZ打算再沉淀一下再写.本次LZ和各位来讨论一点前端的内容,其实有关jquery,在很久之前,LZ就写过一篇简单的源码分析.只不过当时刚开始写博客 ...

  8. 简单分析ThreadPoolExecutor回收工作线程的原理

    最近阅读了JDK线程池ThreadPoolExecutor的源码,对线程池执行任务的流程有了大体了解,实际上这个流程也十分通俗易懂,就不再赘述了,别人写的比我好多了. 不过,我倒是对线程池是如何回收工 ...

  9. 20169212《Linux内核原理与分析》课程总结

    20169212<Linux内核原理与分析>课程总结 每周作业链接汇总 第一周作业:完成linux基础入门实验,了解一些基础的命令操作. 第二周作业:学习MOOC课程--计算机是如何工作的 ...

随机推荐

  1. 关闭,centos yum的自动更新

    今天我虚拟机提示我满了,,,打开磁盘分析器一看,yum的更新目录满了,本地虚拟跟生产环境的版本完全一致,所以我也不打算更新,找一下命令,得先安装yum-cron ,然后再禁止更新 [root@loca ...

  2. Django创建项目时应该要做的几件事

    终于可以在假期开始学习 Django 啦 !

  3. PHP jdtounix() 函数

    ------------恢复内容开始------------ 实例 把格利高里历法的日期转换为儒略日计数,然后把儒略日计数转换为 Unix 时间戳: <?php$jd=gregoriantojd ...

  4. Virtuoso 中的窗口_1

    https://www.cnblogs.com/yeungchie/ hiDisplayAppDBox(简单弹出一个字符串,Tips) prog((TipsForm) hiDisplayAppDBox ...

  5. [USACO09NOV]硬币的游戏 博弈 dp

    LINK : coin game 这道题 超级经典去年这个时候我就看过题目了 但时至今日还不会/cy 觉得在做比赛的题目的时候少写省选的题目 多做水题多做不难也不简单的题目就好了. 由于我是真的不会博 ...

  6. Pintech品致—示波器探头技术标准倡导者

     Pintech品致是仪器仪表的品牌,全球示波器探头第一品牌,示波器探头技术标准倡导者:“两点浮动”电压测试创始人:世界知名品牌,泰克(Tektronix),罗德与施瓦茨R&S,是德(Keys ...

  7. 重学c#系列——异常(六)

    前言 用户觉得异常是不好的,认为出现异常是写的人的问题. 这是不全面,错误的出现并不总是编写程序的人的原因,有时会因为应用程序的最终用户引发的动作或运行代码的环境而发生错误,比如你用android4去 ...

  8. Canal工作原理

    摘自:http://www.importnew.com/25189.html 背景 mysql主备复制实现: 从上层来看,复制分成三步: master将改变记录到二进制日志(binary log)中( ...

  9. SpringBoot+Dynamic多数据源动态切换

    最近做了个小模块,需求就是项目同时读取三个数据库,操作数据.并不是分库分表,只用定时跑,不需要对外提供接口. 技术选型:SpringBoot + Mybatis Plus(Mybatis) + Dyn ...

  10. 【FZYZOJ】珂神不等式&平角咖啡厅 题解(二分答案)

    前言:这题太神了,蒟蒻表示思路完全断档,甚至想到DP.得到大佬hs-black的帮助后才AC此题orz --------------------------------- 题目描述 ck love…… ...