最长异或路径

题目链接:ybt高效进阶2-4-3 / luogu P4551

题目大意

给定一棵 n 个点的带权树,结点下标从 1 开始到 N。寻找树中找两个结点,求最长的异或路径。

异或路径指的是指两个结点之间唯一路径上的所有边权的异或。

思路

首先看到要异或的值最大,我们要想到可以用 Trie 树来贪心弄。

但是它好像不知道怎么弄,那我们先不管它。

那我们看到是一棵树,那我们可以试着统计 \(i\) 到根节点(我这里设是 \(1\))的异或路径的长度是多少。

那我们考虑能不能用这个表示出任意两个点之间的异或路径。

这里先给出结论,其实就是两个点到根节点的异或路径异或起来得出的值。

我们来证明:

分两种情况,分别是一个点在另一个点到根节点的路径上,要么就是两条路径是分开的,不会相交。

  1. 第一种,那我们可以知道一个点,就是一个值异或它自己就是 \(0\),就会消掉。那你想想,第一种情况时这个图:



    那 \(1\) 号点到根节点的异或路径就是 \(a\),\(2\) 号点到根节点的异或路径是 \(a\oplus b\),我们要的是 \(b\)。

    那你发现,把它们异或起来,就是 \(a\oplus a\oplus b=b\)。(两个 \(a\) 异或起来抵消掉了)
  2. 第二种,那我们可以画图。



    那 \(1\) 号点到根节点的异或路径就是 \(a\),\(2\) 号点到根节点的异或路径是 \(b\),我们要的是 \(a\oplus b\)。

    那你发现,把它们异或起来,就是 \(a\oplus b\)。

那你就可以一开始预处理出到根节点的异或路径,然后枚举两个点,然后算这两个点的异或路径,然后取最大值。

但是很明显这样是 \(O(n^2)\) 的,它会超时。

那我们就想一想有什么方法可以快速求最大值的。

想想我们之前一开始想用什么方法?

没错,就是 Trie 树。

我们可以把每个点到根节点的异或路径都放进 Trie 树里面构造。

然后每次枚举你要的异或路径的另一个点,然后跟 Trie 树里面的路径匹配找到最大值。

前面做过一题就是求这个最大值的,主要的就是用了贪心的思想。

从高位向低位枚举,然后如果有跟你这一位不同的就优先选,同时统计这一位异或之后是 \(1\) 对数的贡献。然后如果没有不同的,就看有没有相同的。

(因为毕竟你可以这一位相同,然后尽可能让后面更高的位不同,这样的贡献就更大)

那如果想相同不相同都没有,那就只能以当前的贡献退出了。

(如果想看之前的那一题可以点我查看,不过我只写在了 csdn,博客园里没有,因为比较简单)

然后对这些最大值选一个最大的,就是答案了。

代码

#include<cstdio>
#include<iostream> using namespace std; struct node {
int x, to, nxt;
}e[200001];
struct Tree {
int son[2];
}trie[1000001];
int n, x, y, z, le[100001], KK, go, KKK, ans; void add(int x, int y, int z) {//邻接表
e[++KK] = {z, y, le[x]}; le[x] = KK;
e[++KK] = {z, x, le[y]}; le[y] = KK;
} void build(int num) {//Trie树建树
int now = 0;
for (int i = 31; i >= 0; i--) {
go = num >> i & 1;
if (!trie[now].son[go]) trie[now].son[go] = ++KKK;
now = trie[now].son[go];
}
} int find(int num) {
int now = 0, re = 0;
for (int i = 31; i >= 0; i--) {//从高位到低位贪心看
go = num >> i & 1;
if (trie[now].son[go ^ 1]) {//先看能不能有这一位不同
now = trie[now].son[go ^ 1];
re |= 1 << i;
}
else if (trie[now].son[go]) now = trie[now].son[go];//只能相同
else return re;//都没有,就只能退出了
}
return re;
} void dfs1(int now, int father, int num) {//建出从根节点到 i 点的异或路径构成的 Trie 数
build(num);
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != father)
dfs1(e[i].to, now, num ^ e[i].x);
} void dfs2(int now, int father, int num) {//得出与现在的路径异或能得到的最大值
ans = max(ans, find(num));
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != father)
dfs2(e[i].to, now, num ^ e[i].x);
} int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d %d %d", &x, &y, &z);
add(x, y, z);
} dfs1(1, 0, 0); dfs2(1, 0, 0); printf("%d", ans); return 0;
}

【ybt高效进阶2-4-3】【luogu P4551】最长异或路径的更多相关文章

  1. [luogu] P4551 最长异或路径(贪心)

    P4551 最长异或路径 题目描述 给定一棵\(n\)个点的带权树,结点下标从\(1\)开始到\(N\).寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或 ...

  2. Luogu P4551 最长异或路径

    题目链接 \(Click\) \(Here\) \(01Trie\)好题裸题. 取节点\(1\)为根节点,向下扫每一个点从根节点到它路径上的异或和,我们可以得到一个\(sumx[u]\). 现在路径异 ...

  3. Luogu P4551 最长异或路径 01trie

    做一个树上前缀异或和,然后把前缀和插到$01trie$里,然后再对每一个前缀异或和整个查一遍,在树上从高位向低位贪心,按位优先选择不同的,就能贪出最大的答案. #include<cstdio&g ...

  4. 洛谷P4551 最长异或路径

    传送门:https://www.luogu.org/problem/show?pid=4551 在看这道题之前,我们应懂这道题怎么做:给定n个数和一个数m,求m和哪一个数的异或值最大. 一种很不错的做 ...

  5. 2018.10.26 洛谷P4551 最长异或路径(01trie)

    传送门 直接把每个点到根节点的异或距离插入01trie. 然后枚举每个点在01trie上匹配来更新答案就行了. 代码: #include<iostream> #include<cst ...

  6. P4551 最长异或路径

    题目描述 给定一棵 nnn 个点的带权树,结点下标从 111 开始到 NNN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式 ...

  7. 洛谷 P4551 最长异或路径

    题目描述 给定一棵 nn 个点的带权树,结点下标从 11 开始到 NN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有节点权值的异或. 输入输出格式 输入格式: ...

  8. P4551 最长异或路径 (01字典树,异或前缀和)

    题目描述 给定一棵 n 个点的带权树,结点下标从 1 开始到 N .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式: 第一行一 ...

  9. 洛谷【P4551】最长异或路径

    浅谈\(Trie\):https://www.cnblogs.com/AKMer/p/10444829.html 题目传送门:https://www.luogu.org/problemnew/show ...

随机推荐

  1. 【Oracle】查看表空间是否为自动扩展

    查看指定的表空间是否为自动扩展 SQL>   select file_name,autoextensible,increment_by from dba_data_files where tab ...

  2. VSCode运行时弹出powershell

    问题 安装好了vscode并且装上code runner插件后,运行代码时总是弹出powershell,而不是在vscode底部终端 显示运行结果. 解决方法 打开系统cmd ,在窗口顶部条右击打开属 ...

  3. 命令模式与go-redis command设计

    目录 一.什么是命令(Command)模式 二.go-redis command相关代码 三.总结 一.什么是命令(Command)模式 命令模式是行为型设计模式的一种,其目的是将一个请求封装为一个对 ...

  4. Python赋值、浅复制和深复制

    Python赋值.浅复制和深复制 ​ 首先我们需要知道赋值和浅复制的区别: 赋值和浅复制的区别 赋值,当一个对象赋值给另一个新的变量时,赋的其实是该对象在栈中的地址,该地址指向堆中的数据.即赋值后,两 ...

  5. 笔记 | 吴恩达新书《Machine Learning Yearning》

    这本书共112页,内容不多,偏向于工程向,有很多不错的细节,在此记录一下. 0 书籍获取 关注微信公众号"机器学习炼丹术",回复[MLY]获取pdf 1 测试集与训练集的比例 2 ...

  6. cookie加密 当浏览器全面禁用三方 Cookie

    cookie加密    cookie  localstorage    区别 https://mp.weixin.qq.com/s/vHeRStcCUarwqsY7Y1rpGg 当浏览器全面禁用三方 ...

  7. (Sql Server)SQL FOR XML PATH

    FOR XML PATH 有的人可能知道有的人可能不知道,其实它就是将查询结果集以XML形式展现,有了它我们可以简化我们的查询语句实现一些以前可能需要借助函数活存储过程来完成的工作.那么以一个实例为主 ...

  8. 类型检查和鸭子类型 Duck typing in computer programming is an application of the duck test 鸭子测试 鸭子类型 指示编译器将类的类型检查安排在运行时而不是编译时 type checking can be specified to occur at run time rather than compile time.

    Go所提供的面向对象功能十分简洁,但却兼具了类型检查和鸭子类型两者的有点,这是何等优秀的设计啊! Duck typing in computer programming is an applicati ...

  9. vue初始化页面闪动问题

    使用vue开发时,在vue初始化之前,由于div是不归vue管的,所以我们写的代码在还没有解析的情况下会容易出现花屏现象,看到类似于{{message}}的字样,虽然一般情况下这个时间很短暂,但是我们 ...

  10. 2021年Web开发的7大趋势

    技术发展日新月异,所以 Web 开发人员也需要及时了解行业最新的发展趋势. 全球有超过 17.4 亿个网站.在每一个细分领域都有无数企业争夺搜索引擎的排名前列位置.开发人员应该了解和发现更多创新的 W ...