最长异或路径

题目链接:ybt高效进阶2-4-3 / luogu P4551

题目大意

给定一棵 n 个点的带权树,结点下标从 1 开始到 N。寻找树中找两个结点,求最长的异或路径。

异或路径指的是指两个结点之间唯一路径上的所有边权的异或。

思路

首先看到要异或的值最大,我们要想到可以用 Trie 树来贪心弄。

但是它好像不知道怎么弄,那我们先不管它。

那我们看到是一棵树,那我们可以试着统计 \(i\) 到根节点(我这里设是 \(1\))的异或路径的长度是多少。

那我们考虑能不能用这个表示出任意两个点之间的异或路径。

这里先给出结论,其实就是两个点到根节点的异或路径异或起来得出的值。

我们来证明:

分两种情况,分别是一个点在另一个点到根节点的路径上,要么就是两条路径是分开的,不会相交。

  1. 第一种,那我们可以知道一个点,就是一个值异或它自己就是 \(0\),就会消掉。那你想想,第一种情况时这个图:



    那 \(1\) 号点到根节点的异或路径就是 \(a\),\(2\) 号点到根节点的异或路径是 \(a\oplus b\),我们要的是 \(b\)。

    那你发现,把它们异或起来,就是 \(a\oplus a\oplus b=b\)。(两个 \(a\) 异或起来抵消掉了)
  2. 第二种,那我们可以画图。



    那 \(1\) 号点到根节点的异或路径就是 \(a\),\(2\) 号点到根节点的异或路径是 \(b\),我们要的是 \(a\oplus b\)。

    那你发现,把它们异或起来,就是 \(a\oplus b\)。

那你就可以一开始预处理出到根节点的异或路径,然后枚举两个点,然后算这两个点的异或路径,然后取最大值。

但是很明显这样是 \(O(n^2)\) 的,它会超时。

那我们就想一想有什么方法可以快速求最大值的。

想想我们之前一开始想用什么方法?

没错,就是 Trie 树。

我们可以把每个点到根节点的异或路径都放进 Trie 树里面构造。

然后每次枚举你要的异或路径的另一个点,然后跟 Trie 树里面的路径匹配找到最大值。

前面做过一题就是求这个最大值的,主要的就是用了贪心的思想。

从高位向低位枚举,然后如果有跟你这一位不同的就优先选,同时统计这一位异或之后是 \(1\) 对数的贡献。然后如果没有不同的,就看有没有相同的。

(因为毕竟你可以这一位相同,然后尽可能让后面更高的位不同,这样的贡献就更大)

那如果想相同不相同都没有,那就只能以当前的贡献退出了。

(如果想看之前的那一题可以点我查看,不过我只写在了 csdn,博客园里没有,因为比较简单)

然后对这些最大值选一个最大的,就是答案了。

代码

#include<cstdio>
#include<iostream> using namespace std; struct node {
int x, to, nxt;
}e[200001];
struct Tree {
int son[2];
}trie[1000001];
int n, x, y, z, le[100001], KK, go, KKK, ans; void add(int x, int y, int z) {//邻接表
e[++KK] = {z, y, le[x]}; le[x] = KK;
e[++KK] = {z, x, le[y]}; le[y] = KK;
} void build(int num) {//Trie树建树
int now = 0;
for (int i = 31; i >= 0; i--) {
go = num >> i & 1;
if (!trie[now].son[go]) trie[now].son[go] = ++KKK;
now = trie[now].son[go];
}
} int find(int num) {
int now = 0, re = 0;
for (int i = 31; i >= 0; i--) {//从高位到低位贪心看
go = num >> i & 1;
if (trie[now].son[go ^ 1]) {//先看能不能有这一位不同
now = trie[now].son[go ^ 1];
re |= 1 << i;
}
else if (trie[now].son[go]) now = trie[now].son[go];//只能相同
else return re;//都没有,就只能退出了
}
return re;
} void dfs1(int now, int father, int num) {//建出从根节点到 i 点的异或路径构成的 Trie 数
build(num);
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != father)
dfs1(e[i].to, now, num ^ e[i].x);
} void dfs2(int now, int father, int num) {//得出与现在的路径异或能得到的最大值
ans = max(ans, find(num));
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != father)
dfs2(e[i].to, now, num ^ e[i].x);
} int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d %d %d", &x, &y, &z);
add(x, y, z);
} dfs1(1, 0, 0); dfs2(1, 0, 0); printf("%d", ans); return 0;
}

【ybt高效进阶2-4-3】【luogu P4551】最长异或路径的更多相关文章

  1. [luogu] P4551 最长异或路径(贪心)

    P4551 最长异或路径 题目描述 给定一棵\(n\)个点的带权树,结点下标从\(1\)开始到\(N\).寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或 ...

  2. Luogu P4551 最长异或路径

    题目链接 \(Click\) \(Here\) \(01Trie\)好题裸题. 取节点\(1\)为根节点,向下扫每一个点从根节点到它路径上的异或和,我们可以得到一个\(sumx[u]\). 现在路径异 ...

  3. Luogu P4551 最长异或路径 01trie

    做一个树上前缀异或和,然后把前缀和插到$01trie$里,然后再对每一个前缀异或和整个查一遍,在树上从高位向低位贪心,按位优先选择不同的,就能贪出最大的答案. #include<cstdio&g ...

  4. 洛谷P4551 最长异或路径

    传送门:https://www.luogu.org/problem/show?pid=4551 在看这道题之前,我们应懂这道题怎么做:给定n个数和一个数m,求m和哪一个数的异或值最大. 一种很不错的做 ...

  5. 2018.10.26 洛谷P4551 最长异或路径(01trie)

    传送门 直接把每个点到根节点的异或距离插入01trie. 然后枚举每个点在01trie上匹配来更新答案就行了. 代码: #include<iostream> #include<cst ...

  6. P4551 最长异或路径

    题目描述 给定一棵 nnn 个点的带权树,结点下标从 111 开始到 NNN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式 ...

  7. 洛谷 P4551 最长异或路径

    题目描述 给定一棵 nn 个点的带权树,结点下标从 11 开始到 NN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有节点权值的异或. 输入输出格式 输入格式: ...

  8. P4551 最长异或路径 (01字典树,异或前缀和)

    题目描述 给定一棵 n 个点的带权树,结点下标从 1 开始到 N .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式: 第一行一 ...

  9. 洛谷【P4551】最长异或路径

    浅谈\(Trie\):https://www.cnblogs.com/AKMer/p/10444829.html 题目传送门:https://www.luogu.org/problemnew/show ...

随机推荐

  1. QT串口助手(二):参数配置

    作者:zzssdd2 E-mail:zzssdd2@foxmail.com 一.前言 主要实现功能 串口参数的配置:波特率.数据位.停止位.校验位 本机串口设备的查询与添加显示 串口设备的手动更新与打 ...

  2. centos7下 开启/关闭/查看firewall运行状态命令

    1.开启防火墙:systemctl start firewalld.service [root@localhost bin]# systemctl start firewalld.service [r ...

  3. 入门OJ:简单的网络游戏

    题目描述 在某款极具技术含量的网络游戏中,佳佳靠着他的聪明智慧垄断了游戏中的油田系统.油田里有许多油井,这些油井排成一个M*N的矩形.每个油井都有一个固定的采油量.每两个相邻的油井之间有一条公路,这些 ...

  4. Linux 安装分区设置分区大小

    一.Linux分区挂载点介绍 Linux分区挂载点介绍,推荐容量仅供参考不是绝对,跟各系统用途以及硬盘空间配额等因素实际调整: 分区类型 介绍 备注 /boot 启动分区 一般设置100M-200M, ...

  5. LocalDateTime、OffsetDateTime、ZonedDateTime互转,这一篇绝对喂饱你

    前言 你好,我是A哥(YourBatman). 在JSR 310日期时间体系了,一共有三个API可用于表示日期时间: LocalDateTime:本地日期时间 OffsetDateTime:带偏移量的 ...

  6. java之 Request

    0x01.Request 什么是request 在Servlet API中,定义了一个HttpServletRequest接口,它继承自ServletRequest接口,专门用来封装HTTP请求消息. ...

  7. SQL Server 邮箱告警配置

    目录 配置数据库邮件 * 手动启用数据库邮件功能 * 配置数据库邮件 * 测试数据库邮件 实现 JOB 任务运行状态的检测 * 定义操作员 * 新建死锁警报 * 设置 SQL Server 代理 创建 ...

  8. javascript之Banner图片焦点轮播

    这个Banner唯一不好的就是没有前进和后退的button,写过两个版本的banner,这次这个是下面有浮动层的. <!DOCTYPE html><html xmlns=" ...

  9. pip freeze 需求文件requirements.txt的创建及使用 虚拟环境

    总结: 1.输出安装的包信息,并在另一个环境快速安装 Generate output suitable for a requirements file. $ pip freeze docutils== ...

  10. 使用nodejs构建Docker image最佳实践

    目录 简介 准备nodejs应用程序 创建Dockerfile文件 创建.dockerignore文件 创建docker image 运行docker程序 node的docker image需要注意的 ...