最长异或路径

题目链接:ybt高效进阶2-4-3 / luogu P4551

题目大意

给定一棵 n 个点的带权树,结点下标从 1 开始到 N。寻找树中找两个结点,求最长的异或路径。

异或路径指的是指两个结点之间唯一路径上的所有边权的异或。

思路

首先看到要异或的值最大,我们要想到可以用 Trie 树来贪心弄。

但是它好像不知道怎么弄,那我们先不管它。

那我们看到是一棵树,那我们可以试着统计 \(i\) 到根节点(我这里设是 \(1\))的异或路径的长度是多少。

那我们考虑能不能用这个表示出任意两个点之间的异或路径。

这里先给出结论,其实就是两个点到根节点的异或路径异或起来得出的值。

我们来证明:

分两种情况,分别是一个点在另一个点到根节点的路径上,要么就是两条路径是分开的,不会相交。

  1. 第一种,那我们可以知道一个点,就是一个值异或它自己就是 \(0\),就会消掉。那你想想,第一种情况时这个图:



    那 \(1\) 号点到根节点的异或路径就是 \(a\),\(2\) 号点到根节点的异或路径是 \(a\oplus b\),我们要的是 \(b\)。

    那你发现,把它们异或起来,就是 \(a\oplus a\oplus b=b\)。(两个 \(a\) 异或起来抵消掉了)
  2. 第二种,那我们可以画图。



    那 \(1\) 号点到根节点的异或路径就是 \(a\),\(2\) 号点到根节点的异或路径是 \(b\),我们要的是 \(a\oplus b\)。

    那你发现,把它们异或起来,就是 \(a\oplus b\)。

那你就可以一开始预处理出到根节点的异或路径,然后枚举两个点,然后算这两个点的异或路径,然后取最大值。

但是很明显这样是 \(O(n^2)\) 的,它会超时。

那我们就想一想有什么方法可以快速求最大值的。

想想我们之前一开始想用什么方法?

没错,就是 Trie 树。

我们可以把每个点到根节点的异或路径都放进 Trie 树里面构造。

然后每次枚举你要的异或路径的另一个点,然后跟 Trie 树里面的路径匹配找到最大值。

前面做过一题就是求这个最大值的,主要的就是用了贪心的思想。

从高位向低位枚举,然后如果有跟你这一位不同的就优先选,同时统计这一位异或之后是 \(1\) 对数的贡献。然后如果没有不同的,就看有没有相同的。

(因为毕竟你可以这一位相同,然后尽可能让后面更高的位不同,这样的贡献就更大)

那如果想相同不相同都没有,那就只能以当前的贡献退出了。

(如果想看之前的那一题可以点我查看,不过我只写在了 csdn,博客园里没有,因为比较简单)

然后对这些最大值选一个最大的,就是答案了。

代码

#include<cstdio>
#include<iostream> using namespace std; struct node {
int x, to, nxt;
}e[200001];
struct Tree {
int son[2];
}trie[1000001];
int n, x, y, z, le[100001], KK, go, KKK, ans; void add(int x, int y, int z) {//邻接表
e[++KK] = {z, y, le[x]}; le[x] = KK;
e[++KK] = {z, x, le[y]}; le[y] = KK;
} void build(int num) {//Trie树建树
int now = 0;
for (int i = 31; i >= 0; i--) {
go = num >> i & 1;
if (!trie[now].son[go]) trie[now].son[go] = ++KKK;
now = trie[now].son[go];
}
} int find(int num) {
int now = 0, re = 0;
for (int i = 31; i >= 0; i--) {//从高位到低位贪心看
go = num >> i & 1;
if (trie[now].son[go ^ 1]) {//先看能不能有这一位不同
now = trie[now].son[go ^ 1];
re |= 1 << i;
}
else if (trie[now].son[go]) now = trie[now].son[go];//只能相同
else return re;//都没有,就只能退出了
}
return re;
} void dfs1(int now, int father, int num) {//建出从根节点到 i 点的异或路径构成的 Trie 数
build(num);
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != father)
dfs1(e[i].to, now, num ^ e[i].x);
} void dfs2(int now, int father, int num) {//得出与现在的路径异或能得到的最大值
ans = max(ans, find(num));
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != father)
dfs2(e[i].to, now, num ^ e[i].x);
} int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
scanf("%d %d %d", &x, &y, &z);
add(x, y, z);
} dfs1(1, 0, 0); dfs2(1, 0, 0); printf("%d", ans); return 0;
}

【ybt高效进阶2-4-3】【luogu P4551】最长异或路径的更多相关文章

  1. [luogu] P4551 最长异或路径(贪心)

    P4551 最长异或路径 题目描述 给定一棵\(n\)个点的带权树,结点下标从\(1\)开始到\(N\).寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或 ...

  2. Luogu P4551 最长异或路径

    题目链接 \(Click\) \(Here\) \(01Trie\)好题裸题. 取节点\(1\)为根节点,向下扫每一个点从根节点到它路径上的异或和,我们可以得到一个\(sumx[u]\). 现在路径异 ...

  3. Luogu P4551 最长异或路径 01trie

    做一个树上前缀异或和,然后把前缀和插到$01trie$里,然后再对每一个前缀异或和整个查一遍,在树上从高位向低位贪心,按位优先选择不同的,就能贪出最大的答案. #include<cstdio&g ...

  4. 洛谷P4551 最长异或路径

    传送门:https://www.luogu.org/problem/show?pid=4551 在看这道题之前,我们应懂这道题怎么做:给定n个数和一个数m,求m和哪一个数的异或值最大. 一种很不错的做 ...

  5. 2018.10.26 洛谷P4551 最长异或路径(01trie)

    传送门 直接把每个点到根节点的异或距离插入01trie. 然后枚举每个点在01trie上匹配来更新答案就行了. 代码: #include<iostream> #include<cst ...

  6. P4551 最长异或路径

    题目描述 给定一棵 nnn 个点的带权树,结点下标从 111 开始到 NNN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式 ...

  7. 洛谷 P4551 最长异或路径

    题目描述 给定一棵 nn 个点的带权树,结点下标从 11 开始到 NN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有节点权值的异或. 输入输出格式 输入格式: ...

  8. P4551 最长异或路径 (01字典树,异或前缀和)

    题目描述 给定一棵 n 个点的带权树,结点下标从 1 开始到 N .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式: 第一行一 ...

  9. 洛谷【P4551】最长异或路径

    浅谈\(Trie\):https://www.cnblogs.com/AKMer/p/10444829.html 题目传送门:https://www.luogu.org/problemnew/show ...

随机推荐

  1. 【Linux】添加硬盘不需要重启服务器

    添加硬盘之后,不用重启服务器 执行下面的语句 ls /sys/class/scsi_host 查看下面有多少host 我这里有三个host 分别执行 echo "- - -" &g ...

  2. SAP 摘录数据集

    要在报表中创建并填充摘录数据集,需要执行三步骤:1.将要在摘录数据集中使用的记录类型定义为字段组FIELD-GROUPS该语句定义了字段组,字段组可以将几个字段组合到一个名称下,字段组不为字段保留存储 ...

  3. STGAN: A Unified Selective Transfer Network for Arbitrary Image Attribute Editing 阅读笔记和pytorch代码解读

    一.论文采用的新方法 1.AttGan中skip connect的局限性 由于encoder中对特征的下采样实际上可能损失部分特征,我们在decoder中进行上采样和转置卷积也无法恢复所有特征,因此A ...

  4. 词嵌入之FastText

    什么是FastText FastText是Facebook于2016年开源的一个词向量计算和文本分类工具,它提出了子词嵌入的方法,试图在词嵌入向量中引入构词信息.一般情况下,使用fastText进行文 ...

  5. 1.2V转3V芯片,电路图很少就三个元件

    1.2V的镍氢电池由于稳定高,应用产品也是很广,但是由于电压低,需要1.2V转3V芯片,来将1.2V的电压升压转3V,稳定输出供电. 一般性的1.2V转3V芯片,都是用PW5100比较多,固定输出电压 ...

  6. js实现简单的俄罗斯方块小游戏

    js实现简单的俄罗斯方块小游戏 开始 1. 创建一个宽为 200px,高为 360px 的背景容器 <!DOCTYPE html> <html lang="en" ...

  7. 1.Spring的基本应用

    1.1概述 1.1.1 Spring是什么 Spring一个轻量级的框架,以IOC(控制反转)和AOP(面向切面编程)为内核,Spring在表现层提供了Spring MVC的框架整和功能,在业务逻辑层 ...

  8. What is the difference between Serialization and Marshaling?

    How to serialize and deserialize JSON using C# - .NET | Microsoft Docs https://docs.microsoft.com/en ...

  9. XCTF-easydex

    前期工作 查壳,无.安装打开黑屏. 逆向分析 用jadx打开看看 什么都没有,但可以看一下AndroidManifest 可以看到这个是个纯C/C++写的,没有Java代码,是个NativeActiv ...

  10. 利用Javascript制作网页特效(时间特效)

    在网页中经常可以看到各种各样的动态时间显示,在网页中合理地使用时间可以增加网页的时效感. 显示当前时间 getHours().getMinutes().getSeconds()分别获得当前小时数.当前 ...