推荐系统---深度兴趣网络DIN&DIEN
深度学习在推荐系统、CTR预估领域已经有了广泛应用,如wide&deep、deepFM模型等,今天介绍一下由阿里算法团队提出的深度兴趣网络DIN和DIEN两种模型
paper
DIN:https://arxiv.org/abs/1706.06978
DIEN:https://arxiv.org/abs/1809.03672
code
DIN:https://github.com/zhougr1993/DeepInterestNetwork
DIEN:https://github.com/mouna99/dien
DIN
常见的深度学习网络用于推荐或者CTR预估的模式如下:
Sparse Features -> Embedding Vector -> MLPs -> Sigmoid -> Output.
这种方法主要通过DNN网络抽取特征的高阶特征,减少人工特征组合,如wide&deep、deepFM的DNN部分均是采用这种模式,然而阿里的小组经过研究认为还有以下两种特性在线上数据中十分重要的,而当前的模型无法去挖掘
Diversity:用户在浏览电商网站的兴趣多样性。
Local activation: 由于用户兴趣的多样性,只有部分历史数据会影响到当次推荐的物品是否被点击,而不是所有的历史记录。
为了充分挖掘这些特性,联系到attention机制在nlp等领域的大获成功,阿里团队将attention机制引入推荐系统,在向量进入MLP之前先通过attention机制计算用户行为权重,让每个用户预测关注的兴趣点(行为向量)不同。
网络基本结构如上图,Base Model有一个很大的问题,它对用户的历史行为是同等对待的,没有做任何处理,这显然是不合理的。一个很显然的例子,离现在越近的行为,越能反映你当前的兴趣。因此,DIN模型对用户历史行为基于Attention机制进行一个加权
···
def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False):
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if len(facts.get_shape().as_list()) == 2:
facts = tf.expand_dims(facts, 1)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
mask = tf.equal(mask,tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # Hidden size for rnn layer
query = tf.layers.dense(query,facts_size,activation=None,name='f1'+stag)
query = prelu(query)
queries = tf.tile(query,[1,tf.shape(facts)[1]]) # Batch * Time * Hidden size
queries = tf.reshape(queries,tf.shape(facts))
din_all = tf.concat([queries,facts,queries-facts,queries*facts],axis=-1) # Batch * Time * (4 * Hidden size)
d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag)
d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) # Batch * Time * 1
d_layer_3_all = tf.reshape(d_layer_3_all,[-1,1,tf.shape(facts)[1]]) # Batch * 1 * time
scores = d_layer_3_all
key_masks = tf.expand_dims(mask,1) # Batch * 1 * Time
paddings = tf.ones_like(scores) * (-2 ** 32 + 1)
if not forCnn:
scores = tf.where(key_masks, scores, paddings) # [B, 1, T] ,没有的地方用paddings填充
# Activation
if softmax_stag:
scores = tf.nn.softmax(scores) # [B, 1, T]
# Weighted sum
if mode == 'SUM':
output = tf.matmul(scores,facts) # Batch * 1 * Hidden Size
else:
scores = tf.reshape(scores,[-1,tf.shape(facts)[1]]) # Batch * Time
output = facts * tf.expand_dims(scores,-1) # Batch * Time * Hidden Size
output = tf.reshape(output,tf.shape(facts))
if return_alphas:
return output,scores
else:
return output
···
以上是其中attention的核心代码
DIEN
在用DIN解决了用户的兴趣不同的问题后,模型还存在以下问题
1)用户的兴趣是不断进化的,而DIN抽取的用户兴趣之间是独立无关联的,没有捕获到兴趣的动态进化性
2)通过用户的显式的行为来表达用户隐含的兴趣,这一准确性无法得到保证。
为了解决以上两个问题,阿里算法又提出了DIEN模型
对比DIN的结构,主要区别在于增加了兴趣抽取层和兴趣进化层(RNN)
作者将用户行为表示为序列,利用GRU来抽取兴趣状态
在此之后,为了进一步保证兴趣抽取的准确,作者设计了一个二分类网络,用下一刻的真实行为加GRU的状态拼接作为正例,抽取的假行为拼接GRU状态作为负例,输入二分类网络
同时设计损失函数
然后,抽取完兴趣的状态送入兴趣进化网络,为了让用户兴趣也能追着时间变化,采用RNN设计,同时继承与DIN的attention机制,结合后采用了GRU with attentional update gate (AUGRU)的方法,修改了GRU的结构
此处有多种GRU结合attention的方法。
最终DIEN的实验结果表现很好
推荐系统---深度兴趣网络DIN&DIEN的更多相关文章
- [论文阅读]阿里DIN深度兴趣网络之总体解读
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...
- [阿里DIN] 深度兴趣网络源码分析 之 整体代码结构
[阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 目录 [阿里DIN] 深度兴趣网络源码分析 之 整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x0 ...
- [阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列
[阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 目录 [阿里DIN] 深度兴趣网络源码分析 之 如何建模用户序列 0x00 摘要 0x01 DIN 需要什么数据 0x02 如何产生数据 2 ...
- 推荐系统中的注意力机制——阿里深度兴趣网络(DIN)
参考: https://zhuanlan.zhihu.com/p/51623339 https://arxiv.org/abs/1706.06978 注意力机制顾名思义,就是模型在预测的时候,对用户不 ...
- 深度兴趣网络DIN-SIEN-DSIN
看看阿里如何在淘宝做推荐,实现"一人千物千面"的用户多样化兴趣推荐,首先总结下DIN.DIEN.DSIN: 传统深度学习在推荐就是稀疏到embedding编码,变成稠密向量,喂给N ...
- 阿里深度兴趣网络模型paper学习
论文地址:Deep Interest Network for Click-Through Rate ... 这篇论文来自阿里妈妈的精准定向检索及基础算法团队.文章提出的Deep Interest Ne ...
- [论文阅读]阿里DIEN深度兴趣进化网络之总体解读
[论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...
- [阿里DIEN] 深度兴趣进化网络源码分析 之 Keras版本
[阿里DIEN] 深度兴趣进化网络源码分析 之 Keras版本 目录 [阿里DIEN] 深度兴趣进化网络源码分析 之 Keras版本 0x00 摘要 0x01 背景 1.1 代码进化 1.2 Deep ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...
随机推荐
- Mysql安装(解压版)
文章首推 刷网课请点击这里 刷二级请点击这里 论文查重请点击这里 WIFI破解详细教程 今日主题:Mysql安装(解压版) 环境 系统:windows10 版本:mysql5.7.29 安装过程 1. ...
- 【奇淫巧技】sqlmap绕过过滤的tamper脚本分类汇总
sqlmap绕过过滤的tamper脚本分类汇总
- unsigned int 和 int
就如同int a:一样,int 也能被其它的修饰符修饰.除void类型外,基本数据类型之前都可以加各种类型修饰符,类型修饰符有如下四种:1.signed----有符号,可修饰char.int.Int是 ...
- 用集装箱装ASP。带有Docker和Azure Kubernetes服务的NET Core应用程序
介绍 曾经有一个单一软件应用程序的时代,整个应用程序被打包并部署在作为单个进程运行的单个服务器上.我们都知道,在这个模型中,单点故障可能会导致整个应用程序崩溃. 微服务体系结构的发展是为了解决单片应用 ...
- 极客 Play 玩 Terminal——GitHub 热点速览 Vol.40
作者:HelloGitHub-小鱼干 多少人以为暗黑的终端便是一名程序员的工作台,其实上,终端可以不只是一个输入 command 的界面,也可以是本周特推 kb 一样,面向极客的极简命令行知识库管理器 ...
- 第3天 | 12天搞定Python,用PyCharm编写代码
有了运行环境还不够,在程序的江湖里,还得有一把趁手的"兵器". 工欲善其事,必先利其器,在进行Python开发时,可选择 IDE挺多的,其中,以PyCharm. Eclipse+P ...
- Dubbo部分知识点总结
Dubbo部分 Dubbo工作原理 dubbo工作原理第一层:service层,接口层,给服务提供者和消费者来实现的第二层:config层,配置层,主要是对dubbo进行各种配置的第三层:proxy层 ...
- 多测师讲解pthon _函数__return_高级讲师肖sir
#函数中的返回的作用(return) 案例: #函数中的返回的作用:def fun(): #定义的一个函数 num =100 a=num/2 #print(a) #50.0 return a # pr ...
- 初试Python
01 Python简介 Python是一种跨平台的计算机程序设计语言.于1989年开发的语言,创始人范罗苏姆(Guido van Rossum),别称:龟叔(Guido). python具有非常多并且 ...
- centos8安装RabbitMQ
一.安装erlang # 添加仓库 curl -s https://packagecloud.io/install/repositories/rabbitmq/erlang/script.rpm.sh ...