题目地址:

pid=5016">HDU 5016

先两遍DFS预处理出每一个点距近期的基站的距离与基站的编号。

然后找重心。求出每一个点距重心的距离。然后依据dis[x]+dis[y] < d[y]。用二分找出当前子树中不会被占据的数量,总点数减去即是被占据的数量。

这样就能够求出每一个点最多占据的点的数量。然后找最大值就可以。

代码例如以下:

#include <iostream>
#include <string.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <stdlib.h>
#include <map>
#include <set>
#include <stdio.h>
#include <time.h>
using namespace std;
#define LL __int64
#define pi acos(-1.0)
#pragma comment(linker, "/STACK:1024000000")
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const double eqs=1e-9;
const int MAXN=100000+10;
int head[MAXN], cnt, root, min1, tot;
int siz[MAXN], vis[MAXN], d[MAXN], id[MAXN], ans[MAXN], dis[MAXN];
int color[MAXN];
struct node
{
int v, w, next;
}edge[MAXN<<1];
void add(int u, int v, int w)
{
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++;
}
struct N
{
int dis, id;
}F[MAXN];
bool cmp(N x, N y)
{
return x.dis<y.dis||(x.dis==y.dis&&x.id<y.id);
}
void init()
{
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
memset(d,INF,sizeof(d));
memset(id,0,sizeof(id));
memset(ans,0,sizeof(ans));
cnt=0;
}
void dfs1(int u, int fa)
{
if(color[u]){
id[u]=u;
d[u]=0;
}
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue ;
dfs1(v,u);
if(d[u]>d[v]+edge[i].w){
d[u]=d[v]+edge[i].w;
id[u]=id[v];
}
else if(d[u]==d[v]+edge[i].w)
id[u]=min(id[u],id[v]);
}
}
void dfs2(int u, int fa)
{
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(v==fa) continue ;
if(d[v]>d[u]+edge[i].w){
d[v]=d[u]+edge[i].w;
id[v]=id[u];
}
else if(d[v]==d[u]+edge[i].w){
id[v]=min(id[v],id[u]);
}
dfs2(v,u);
}
}
void getsize(int u, int fa)
{
siz[u]=1;
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(v==fa||vis[v]) continue ;
getsize(v,u);
siz[u]+=siz[v];
}
}
void getroot(int u, int fa, int s)
{
int max1=0;
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(v==fa||vis[v]) continue ;
getroot(v,u,s);
max1=max(max1,siz[v]);
}
max1=max(max1,s-siz[u]);
if(min1>max1){
min1=max1;
root=u;
}
}
void getdis(int u, int fa, int l)
{
dis[u]=l;
F[tot].dis=d[u]-l;
F[tot++].id=id[u];
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(v==fa||vis[v]) continue ;
getdis(v,u,l+edge[i].w);
}
}
int BS(int l, int u)
{
int low=0, high=tot-1, mid, ans=-1;
while(low<=high){
mid=low+high>>1;
if(F[mid].dis<l||(F[mid].dis==l&&F[mid].id<=u)){
low=mid+1;
ans=mid;
}
else high=mid-1;
}
return ans+1;
}
void getans(int u, int fa, int f, int s)
{
int tmp=BS(dis[u],u);
ans[u]+=f*(s-tmp);
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(v==fa||vis[v]) continue ;
getans(v,u,f,s);
}
}
void Cal(int u, int l, int f)
{
tot=0;
getdis(u,-1,l);
sort(F,F+tot,cmp);
getans(u,-1,f,siz[u]);
}
void work(int u)
{
vis[u]=1;
getsize(u,-1);
Cal(u,0,1);
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].v;
if(vis[v]) continue ;
Cal(v,edge[i].w,-1);
min1=INF;
getroot(v,u,siz[v]);
work(root);
}
}
int main()
{
int n, u, v, w, i, res;
while(scanf("%d",&n)!=EOF){
init();
for(i=1;i<n;i++){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
}
for(i=1;i<=n;i++){
scanf("%d",&color[i]);
}
dfs1(1,-1);
dfs2(1,-1);
min1=INF;
getsize(1,-1);
getroot(1,-1,n);
work(root);
res=0;
for(i=1;i<=n;i++){
if(color[i]) continue ;
res=max(res,ans[i]);
}
printf("%d\n",res);
}
return 0;
}

HDU 5016 Mart Master II (树上点分治)的更多相关文章

  1. HDU 5016 Mart Master II

    Mart Master II Time Limit: 6000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ...

  2. 【点分治】hdu5016 Mart Master II

    点分治好题. ①手动开栈. ②dp预处理每个点被哪个市场控制,及其距离是多少,记作pair<int,int>数组p. ③设dis[u].first为u到重心s的距离,dis[u].seco ...

  3. HDU - 6268: Master of Subgraph (分治+bitset优化背包)

    题意:T组样例,给次给出一个N节点的点权树,以及M,问连通块的点权和sum的情况,输出sum=1到M,用0或者1表示. 思路:背包,N^2,由于是无向的连通块,所以可以用分治优化到NlgN. 然后背包 ...

  4. hdu 5016 点分治(2014 ACM/ICPC Asia Regional Xi'an Online)

    Mart Master II Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  5. codeforces 161D Distance in Tree 树上点分治

    链接:https://codeforces.com/contest/161/problem/D 题意:给一个树,求距离恰好为$k$的点对是多少 题解:对于一个树,距离为$k$的点对要么经过根节点,要么 ...

  6. POJ 1741 Tree 树上点分治

    题目链接:http://poj.org/problem?id=1741 题意: 给定一棵包含$n$个点的带边权树,求距离小于等于K的点对数量 题解: 显然,枚举所有点的子树可以获得答案,但是朴素发$O ...

  7. HDU 3081 Marriage Match II(二分法+最大流量)

    HDU 3081 Marriage Match II pid=3081" target="_blank" style="">题目链接 题意:n个 ...

  8. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  9. HDU 3081 Marriage Match II (二分图,并查集)

    HDU 3081 Marriage Match II (二分图,并查集) Description Presumably, you all have known the question of stab ...

随机推荐

  1. Java常用集合类

    上述类图中,实线边框的是实现类,比如ArrayList,LinkedList,HashMap等,折线边框的是抽象类,比如AbstractCollection,AbstractList,Abstract ...

  2. MySQL关于视图的创建

    -- 视图就是一条select 语句 执行后返回结果集,是一种虚拟表,是一个逻辑表 -- 方便操作,减少复杂的SQL语句,增加可读性,更加安全一些 create view demo_view as s ...

  3. reactnative(1) - RefreshControl 使用案例

    'use strict'; import React, { Component } from 'react'; import { AppRegistry, ScrollView, StyleSheet ...

  4. 用CSS样式写选择框右侧小三角

    直接上代码! <!DOCTYPE html><html lang="en"><head> <title>小三角</title& ...

  5. Python3之切片的道理

    list的切片有三个参数:起点,终点,步长 list[::-1] 相当于起点为最后的一个,终点为第一个,然后一次减少一个 更多的看下面的测试 >>> a = [0,1,2,3,4,5 ...

  6. C#入门经典 Chapter4 流程控制

    4.1布尔逻辑 布尔比较运算符 ==  !=   <   >    <=    >= 处理布尔值的布尔值运算符 ! & | ^(异或) 条件布尔运算符 &&am ...

  7. CorelDRAW 中文官网 618 48H秒杀开始,多重好礼即刻开抢!

    618我有诚意,你呢? 不花钱的618,是残缺的618 给自己一个放肆shopping的机遇 活动力度不够大? 继续升级,终极体验 6月17日—6月18日 618疯狂48小时!   同志们,如果你错过 ...

  8. picturebox中添加图片

    private void Form1_Load(object sender, EventArgs e) { radioButton2.Checked = true; } private void ra ...

  9. 常见的Xshell运行命令

    最近接触到了Xshell这个软件,使用这个软件我们来进行连接Linux系统,进去之后我们可能会两眼一抹黑,小编就带大家来学些常见的shell命令. 首先我们要跟大家从最简单的聊起,我们进入Xshell ...

  10. oracle数据库视图,序列,索引的sql语句查看

    1.视图:相当于表,可以用select * from tab;查看所有表和视图: 2.序列和索引可以利用select * from user_indexes 或者user_sequences;进行查看 ...