给定一个二维平面,平面上有 个点,求最多有多少个点在同一条直线上。

示例 1:

输入: [[1,1],[2,2],[3,3]]
输出: 3
解释:
^
|
|        o
|     o
|  o  
+------------->
0  1  2  3 4

示例 2:

输入: [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
输出: 4
解释:
^
|
| o
|     o   o
|      o
|  o   o
+------------------->
0  1  2  3  4  5  6 看到此题,第一想法是用一个数据结构来表示某一条直线,直线的表达式有y = ax + b ,那提取出 a和b是不是就可以了,写完发现还有x = 1这种直线。然后想通过hashmap来保存直线对应的点数,如果参数a和b是个1/3这种值,由于精度问题,算出来的两个直线的数据结构的hash值就不一样,hashmap就是认为是两个key。 最后无奈换成分数表达式 y = (a1/a2)*x + b1/b2; b1/b2 = (a2*y - a1*x)/a2;这样4个int变量,就可以精确表示一条直线.当然,分数需要进行约分!
struct FPoint {
int a1;
int a2;
int b1;
int b2;
FPoint() : a1(), a2(), b1(), b2() {}
FPoint(int _a1, int _a2)
{
if (_a1 * _a2 > )
{
a1 = abs(_a1);
a2 = abs(_a2);
}
else
{
a1 = - * abs(_a1);
a2 = abs(_a2);
}
b1 = ;
b2 = ;
}
bool Contain(Point p)const
{
long long int t1 = 1L, t2 = 1L;
t1 = t1 * p.y * (a2*b2);
t2 = t2 * a1*b2*p.x + b1*a2;
return a2 == ? p.x == b1 / b2 : t1 == t2;
}
void Normal()
{
if (a1 == && a2 == )
{
}
else if (a1 == )
a2 = ;
else if (a2 == )
a1 = ;
else
{
int s = a1*a2 > ? : -;
a1 = abs(a1);
a2 = abs(a2);
int _gcd = GCD(a1, a2);
a1 = s * a1 / _gcd;
a2 = a2 / _gcd; if (b1 == )
b2 = ;
else
{
s = b1*b2 > ? : -;
b1 = abs(b1);
b2 = abs(b2);
_gcd = GCD(b1, b2);
b1 = s * b1 / _gcd;
b2 = b2 / _gcd;
}
} }
  //最大公约数
int GCD(int a, int b){
int m = a, n = b, r;
if (m < n){
int temp = m;
m = n;
n = temp;
}
r = m % n;
while (r){
m = n;
n = r;
r = m % n;
}
return n;
}
};
struct RecordHash
{
size_t operator()(const FPoint& f) const{
return hash<int>()(f.a1) ^ hash<int>()(f.a2) ^ hash<int>()(f.b1) ^ hash<int>()(f.b2);
}
};
struct RecordCmp
{
bool operator()(const FPoint& f1, const FPoint& f2) const{
return f1.a1 == f2.a1 && f1.a2 == f2.a2 &&f1.b1 == f2.b1&&f1.b2 == f2.b2;
}
}; class Solution {
public:
FPoint GetPoint(Point a, Point b)
{
FPoint f(b.y - a.y, b.x - a.x );
if (f.a2 == )
{
f.b1 = a.x;
f.b2 = ;
}
else
{
f.b1 = (f.a2*a.y - f.a1*a.x);
f.b2 = f.a2;
}
return f;
}
int maxPoints(vector<Point>& points) {
if (points.size() <= )
{
return points.size();
}
unordered_set<int> index_set;
unordered_map<FPoint, int, RecordHash, RecordCmp> line_map;
int max_point = ;
for (int i = ; i < points.size(); i++)
{
unordered_map<FPoint, int, RecordHash, RecordCmp>::iterator itr = line_map.begin();
for (; itr != line_map.end(); itr++)
{
if (itr->first.Contain(points[i]))
{
itr->second++;
max_point = max(max_point, itr->second);
if (index_set.count(i) == )index_set.insert(i);
}
}
for (int r = ; r < points.size() ; r++)
{
if (r != i && index_set.count(r) == )
{
FPoint f = GetPoint(points[i], points[r]);
f.Normal();
if (line_map[f] == )
{
line_map[f]++;
}
if (index_set.count(i) == )
{
index_set.insert(i);
}
max_point = max(max_point, line_map[f]);
}
}
}
return max_point;
}
};

Max Points on a Line(直线上最多的点数)的更多相关文章

  1. 149 Max Points on a Line 直线上最多的点数

    给定二维平面上有 n 个点,求最多有多少点在同一条直线上. 详见:https://leetcode.com/problems/max-points-on-a-line/description/ Jav ...

  2. Leetcode 149.直线上最多的点数

    直线上最多的点数 给定一个二维平面,平面上有 n 个点,求最多有多少个点在同一条直线上. 示例 1: 输入: [[1,1],[2,2],[3,3]] 输出: 3 解释: ^ | |        o ...

  3. Java实现 LeetCode 149 直线上最多的点数

    149. 直线上最多的点数 给定一个二维平面,平面上有 n 个点,求最多有多少个点在同一条直线上. 示例 1: 输入: [[1,1],[2,2],[3,3]] 输出: 3 解释: ^ | | o | ...

  4. [Swift]LeetCode149. 直线上最多的点数 | Max Points on a Line

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  5. leetcode 149. 直线上最多的点数 解题报告

    给定一个二维平面,平面上有 n 个点,求最多有多少个点在同一条直线上. 示例 1: 输入: [[1,1],[2,2],[3,3]] 输出: 3 解释: ^ | | o | o | o +------- ...

  6. 【leetcode】Max Points on a Line

    Max Points on a Line 题目描述: Given n points on a 2D plane, find the maximum number of points that lie ...

  7. [leetcode]Max Points on a Line @ Python

    原题地址:https://oj.leetcode.com/problems/max-points-on-a-line/ 题意:Given n points on a 2D plane, find th ...

  8. LeetCode之Max Points on a Line Total

    1.问题描述 Given n points on a 2D plane, find the maximum number of points that lie on the same straight ...

  9. BZOJ3403: [Usaco2009 Open]Cow Line 直线上的牛

    3403: [Usaco2009 Open]Cow Line 直线上的牛 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 48  Solved: 41[S ...

随机推荐

  1. MATLAB解析PFM格式图像

    http://www.p-chao.com/ja/2016-09-27/matlab%E8%A7%A3%E6%9E%90pfm%E6%A0%BC%E5%BC%8F%E5%9B%BE%E5%83%8F/ ...

  2. Bate版总结会议2

    本次会议主要是针对我们在冲刺阶段出现的问题进行的讨论.再有就是以后在开发中应该改进的地方. 问题一: 工作任务不能拖:因为任务一拖就很可能无法再规定的时间内完成,如果我们可以分配好任务就去做的话,我们 ...

  3. ASP.NET-SOAP、UDDI知识点

    1. 什么是SOAP? 答:是简单访问协议.是在分布式环境中,交换信息并实现远程调用的协议.是一个基于XML的协议.使用SOAP,可以不考虑任何传输协议,但通常还是HTTP协议,可以允许任何类型的对象 ...

  4. Qt之窗体透明

    简述 关于窗体透明,经常遇到,下面我们针对常用的透明效果进行讲解: 全透明(主窗体.子窗体均透明) 主窗体透明(子窗体不透明) 子窗体透明(主窗体不透明) 简述 正常状态 全透明 效果 源码 主窗体透 ...

  5. [windows+cocos2dx]CCSprite精灵类

    序言 回想cocos2dx,之前在mac+Xcode平台学习了一遍cocos2dx,一年时间不接触cocos了.一直在搞Unity3d.如今还是就之前所学温故温故,但不再用Xcode来写.用经常使用的 ...

  6. VS2008执行MFC程序,提示microsoft incremental linker已停止工作解决方法

    事实上这边是由于设置有问题.详细的解决方式例如以下: 第一步:点击项目->"你的文件"属性->配置属性->链接器->启用增量链接   将  是(/INCRE ...

  7. 使用Ant打包Android应用具体解释

    计划写个完整的使用Ant打包Android应用的系列文章.三篇文章.首篇具体介绍採用Ant打包Android应用的流程.列出部分定制问题及其解决方法,第二篇介绍我理解的Ant打包的思路与主要的概念和使 ...

  8. android studio 、 as 如何导入eclipse项目

    安卓项目有两种,一种是eclipse开发的,一种的android studio开发的.有些在github开源的安卓项目,下载下来之后不知道该如何处理了. 这个是Eclipse安卓项目的目录结构. 这个 ...

  9. iOS-MBProgressHUD使用

    在码代码过程中,我们经常用到MBProgressHUD,但我很少实例化使用,一般都是偷个懒直接显示隐藏,这里贴上详解,以便日后有样式要求时使用. 1,MBProgressHUD常用属性和用法Demo ...

  10. [JZOJ 5888] [NOIP2018模拟9.29] GCD生成树 解题报告 (最大生成树+公约数)

    题目链接: http://172.16.0.132/senior/#main/show/5888 题目: 题解: 思路是这样的:两个数的最大公约数一定不会比这两个数的任意一个数大.因此我们把权值相等的 ...