【hdu 1536】S-Nim
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7410 Accepted Submission(s): 3127
Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:
The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
The players take turns chosing a heap and removing a positive number of beads from it.
The first player not able to make a move, loses.
Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:
Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
If the xor-sum is 0, too bad, you will lose.
Otherwise, move such that the xor-sum becomes 0. This is always possible.
It is quite easy to convince oneself that this works. Consider these facts:
The player that takes the last bead wins.
After the winning player’s last move the xor-sum will be 0.
The xor-sum will change after every move.
Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.
Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?
your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
Output
For each position: If the described position is a winning position print a ‘W’.If the described position is a losing position print an ‘L’. Print a newline after each test case.
Sample Input
2 2 5 3 2 5 12 3 2 4 7 4 2 3 7 12 5 1 2 3 4 5 3 2 5 12 3 2 4 7 4 2 3 7 12 0
Sample Output
LWW
WWL
【题目链接】:http://acm.hdu.edu.cn/showproblem.php?pid=1536
【题解】
/*
s是个集合!
每次只能拿走s集合里面的数字大小的个数;
它没有说是有序的..
所以从小到大枚举不能直接break;(先排序就可以了);
算出每组S的对应的sg函数(0..10000);
然后看看所有的h的异或值是不是0,是0就先手输;
否则先手赢;
子游戏的sg函数是能够叠加的(用抑或叠加)就变成组合博弈了(听起来很高端吧~);
*/
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rei(x) scanf("%d",&x)
const int MAXK = 1e2+10;
const int MAXH = 1e4+10;
int k,s[MAXK],sg[MAXH],m,l,h[MAXK];
bool flag[MAXK];
int main()
{
//freopen("D:\\rush.txt","r",stdin);
rei(k);
while (k!=0)
{
rep1(i,1,k)
rei(s[i]);
sort(s+1,s+1+k);
sg[0] = 0;
rep1(i,1,10000)
{
rep1(j,0,100)
flag[j] = false;
for (int j = 1;i-s[j]>=0 && j<=k;j++)
flag[sg[i-s[j]]] = true;
rep1(j,0,100)
if (!flag[j])
{
sg[i] = j;
break;
}
}
rei(m);
rep1(i,1,m)
{
int temp = 0;
rei(l);
rep1(j,1,l)
{
rei(h[j]);
temp = temp^sg[h[j]];
}
if (temp == 0)
printf("L");
else
printf("W");
}
puts("");
rei(k);
}
return 0;
}
【hdu 1536】S-Nim的更多相关文章
- 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题
[HDU 3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...
- 【HDU 5647】DZY Loves Connecting(树DP)
pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...
- -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】
[把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...
- 【HDU 2196】 Computer(树的直径)
[HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...
- 【HDU 2196】 Computer (树形DP)
[HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...
- 【HDU 5145】 NPY and girls(组合+莫队)
pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...
- 【hdu 3032】Nim or not Nim?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...
- 【HDU 2176】 取(m堆)石子游戏
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2176 [算法] Nim博弈 当石子数异或和不为0时,先手必胜,否则先手必败 设石子异或和为S 如果 ...
- 【hdu 4315】Climbing the Hill
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...
随机推荐
- Python基础教程之第1章 基础知识
#1.1 安装Python #1.1.1 Windows #1.1.2 Linux和UNIX #1.1.3 Macintosh #1.1.4 其它公布版 #1.1.5 时常关注.保持更新 #1.2 交 ...
- JAVA异常机制简述
1.类的继承结构 在JAVA所有的异常对象都是Throwable类的一个子类的实例 Exception包含两个分支,由于程序错误导致的异常属于RuntimeException,比如数组下标越界,空指针 ...
- Android 6.0 最简单的权限获取方法 RxPermition EasyPermition
Android 6.0 要单独的获取权限 这里提供两种很简单的方法 EasyPermition RxPermition EasyPermition https://github.com/googles ...
- ASP.NET MVC案例教程(基于ASP.NET MVC beta)——第五篇:MVC整合Ajax
摘要 本文将从完成“输入数据验证”这个功能出发,逐渐展开ASP.NET MVC与Ajax结合的方法.首先,本文将使用ASP.NET MVC提供的同步方式完成数据验证.而后,将分别结合ASP. ...
- 关于数据库中的JOIN的用法学习
下面是例子分析 表A记录如下: aID aNum 1 a20050111 2 a20050112 3 a20050113 4 a20050114 5 a20050115 表B记录如下: ...
- python 深浅拷贝 进阶
主要理解新与旧究竟在哪里 这样也就理解了 深浅拷贝 先说说赋值,事实上python中的赋值事实上是赋值了一个引用.比如: foo1=1.0 foo2=foo1 用操作符is推断时.你能够发现结果是tr ...
- 强大的xUtils工具类整理
xUtils简单介绍 xUtils 包括了非常多有用的android工具. xUtils 支持大文件上传,更全面的http请求协议支持(10种谓词),拥有更加灵活的ORM,很多其它的事件注解支持且不受 ...
- 12.SpringBoot+MyBatis(XML)+Druid
转自:https://www.cnblogs.com/MaxElephant/p/8108342.html 主要是在Spring Boot中集成MyBatis,可以选用基于注解的方式,也可以选择xml ...
- Project Euler 613 Pythagorean Ant(概率+积分)
题目链接:点击我打开题目链接 题目大意: 给你一只蚂蚁,它在一个 边长为 \(30-40-50\) 的直角三角形\((x,y)\)上,并且它在直角三角形中选择的位置和移动方向的概率都是相等的.问你这只 ...
- 最全Pycharm教程(42)——Pycharm扩展功能之Emacs外部编辑器
1.主题 介绍怎样将Emacs定义为一个Pycharm外部编辑器. 2.准备工作 (1)Pycharm版本号为2.7或更高 (2)下载了downloadedEmacs并正确安装 3.配置Emacs 打 ...