LBP 特征
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征
1、LBP特征的描述
原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:
LBP的改进版本:
原始的LBP提出后,研究人员不断对其提出了各种改进和优化
(1)圆形LBP算子:
基本的 LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala等对 LBP 算子进行了改进,将 3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP 算子允许在半径为 R 的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;
(2)LBP旋转不变模式
从 LBP 的定义可以看出,LBP 算子是灰度不变的,但却不是旋转不变的。图像的旋转就会得到不同的 LBP值。
Maenpaa等人又将 LBP算子进行了扩展,提出了具有旋转不变性的 LBP 算子,即不断旋转圆形邻域得到一系列初始定义的 LBP值,取其最小值作为该邻域的 LBP 值。
图 2.5 给出了求取旋转不变的 LBP 的过程示意图,图中算子下方的数字表示该算子对应的 LBP值,图中所示的 8 种 LBP模式,经过旋转不变的处理,最终得到的具有旋转不变性的 LBP值为 15。也就是说,图中的 8种 LBP 模式对应的旋转不变的 LBP模式都是 00001111。
基本的LBP算子只局限在3*3的邻域内,对于较大图像大尺度的结构不能很好的提取需要的纹理特征,因此研究者们对LBP算子进行了扩展。新的LBP算子LBP(P,R) 可以计算不同半径邻域大小和不同像素点数的特征值,其中P表示周围像素点个数,R表示邻域半径,同时把原来的方形邻域扩展到了圆形,下图给出了四种扩展后的LBP例子,其中,R可以是小数,对于没有落到整数位置的点,根据轨道内离其最近的两个整数位置像素灰度值,利用双线性差值的方法可以计算它的灰度值。
(3)LBP等价模式
一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子将会产生P2种模式。很显然,随着邻域集内采样点数的增加,二进制模式的种类是急剧增加的。例如:5×5邻域内20个采样点,有220=1,048,576种二进制模式。如此多的二值模式无论对于纹理的提取还是对于纹理的识别、分类及信息的存取都是不利的。同时,过多的模式种类对于纹理的表达是不利的。例如,将LBP算子用于纹理分类或人脸识别时,常采用LBP模式的统计直方图来表达图像的信息,而较多的模式种类将使得数据量过大,且直方图过于稀疏。因此,需要对原始的LBP模式进行降维,使得数据量减少的情况下能最好的代表图像的信息。
为了解决二进制模式过多的问题,提高统计性,Ojala提出了采用一种“等价模式”(Uniform Pattern)来对LBP算子的模式种类进行降维。Ojala等认为,在实际图像中,绝大多数LBP模式最多只包含两次从1到0或从0到1的跳变。因此,Ojala将“等价模式”定义为:当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。如00000000(0次跳变),00000111(只含一次从0到1的跳变),10001111(先由1跳到0,再由0跳到1,共两次跳变)都是等价模式类。除等价模式类以外的模式都归为另一类,称为混合模式类,例如10010111(共四次跳变)(这是我的个人理解,不知道对不对)。
通过这样的改进,二进制模式的种类大大减少,而不会丢失任何信息。模式数量由原来的2P种减少为 P ( P-1)+2种,其中P表示邻域集内的采样点数。对于3×3邻域内8个采样点来说,二进制模式由原始的256种减少为58种,这使得特征向量的维数更少,并且可以减少高频噪声带来的影响。
LBP(P,R)有2^p个值,也就是说图像共有2^p种二进制模型,然而实际研究中发现,所有模式表达信息的重要程度是不同的,统计研究表明,一幅图像中少数模式特别集中,达到总模式的百分之九十左右的比例,Ojala等人定义这种模式为Uniform模式,如果一个二进制序列看成一个圈时,0-1以及1-0的变化出现的次数总和不超过两次,那么这个序列就是Uniform模式 ,比如,00000000、00011110、00100001、11111111,在使用LBP表达图像纹理时,通常只关心Uniform模式,而将所有其他的模式归到同一类中。
人脸图像的各种LBP模式如下图所示,由图中可以看出,变化后的图像和原图像相比,能更清晰的体现各典型区域的纹理,同时又淡化了对于研究价值不大的平滑区域的特征,同时降低了特征的维数。比较而言,Uniform模式表现的更逼真,在人脸识别和表情识别应用中,都是采用这种模式。
2、LBP特征用于检测的原理
显而易见的是,上述提取的LBP算子在每个像素点都可以得到一个LBP“编码”,那么,对一幅图像(记录的是每个像素点的灰度值)提取其原始的LBP算子之后,得到的原始LBP特征依然是“一幅图片”(记录的是每个像素点的LBP值)。
LBP的应用中,如纹理分类、人脸分析等,一般都不将LBP图谱作为特征向量用于分类识别,而是采用LBP特征谱的统计直方图作为特征向量用于分类识别。
因为,从上面的分析我们可以看出,这个“特征”跟位置信息是紧密相关的。直接对两幅图片提取这种“特征”,并进行判别分析的话,会因为“位置没有对准”而产生很大的误差。后来,研究人员发现,可以将一幅图片划分为若干的子区域,对每个子区域内的每个像素点都提取LBP特征,然后,在每个子区域内建立LBP特征的统计直方图。如此一来,每个子区域,就可以用一个统计直方图来进行描述;整个图片就由若干个统计直方图组成;
例如:一幅100*100像素大小的图片,划分为10*10=100个子区域(可以通过多种方式来划分区域),每个子区域的大小为10*10像素;在每个子区域内的每个像素点,提取其LBP特征,然后,建立统计直方图;这样,这幅图片就有10*10个子区域,也就有了10*10个统计直方图,利用这10*10个统计直方图,就可以描述这幅图片了。之后,我们利用各种相似性度量函数,就可以判断两幅图像之间的相似性了;
3、对LBP特征向量进行提取的步骤
(1)首先将检测窗口划分为16×16的小区域(cell);
(2)对于每个cell中的一个像素,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数,即得到该窗口中心像素点的LBP值;
(3)然后计算每个cell的直方图,即每个数字(假定是十进制数LBP值)出现的频率;然后对该直方图进行归一化处理。
(4)最后将得到的每个cell的统计直方图进行连接成为一个特征向量,也就是整幅图的LBP纹理特征向量;
然后便可利用SVM或者其他机器学习算法进行分类了。
LBP 特征的更多相关文章
- 图像特征提取之LBP特征
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子:它具有旋转不变性和灰度不变性等显著的优点.它是首先由T. Ojala, M.Pietik?inen ...
- 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...
- 目标检测的图像特征提取之(二)LBP特征
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像年提出,用于纹理特征提取.而且,提取的特征是图像的局部的纹理特征: 1.LBP特征的描述 原始的LBP算子定义为在3* ...
- 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...
- LBP特征学习(附python实现)
LBP的全称是Local Binary Pattern即局部二值模式,是局部信息提取中的一种方法,它具有旋转不变性和灰度不变性等显著的优点.在人脸识别领域有很多案例,此外,局部特征的算法还有 SIFT ...
- EasyPR源码剖析(6):车牌判断之LBP特征
一.LBP特征 LBP指局部二值模式,英文全称:Local Binary Pattern,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点. 原始的LBP算子定义在像素 ...
- 【图像处理基础】LBP特征
前言 其中dsptian的博客不仅给出了LBP的实现,还计算了LBPH,计算LBP过程中有点小瑕疵,评论中有给出修改方法.除了使用power还可以使用bitxor函数实现. lbpcode = bit ...
- 行人检测4(LBP特征)
参考原文: http://blog.csdn.net/zouxy09/article/details/7929531 http://www.cnblogs.com/dwdxdy/archive/201 ...
- [CV笔记]图像特征提取三大法宝:HOG特征,LBP特征,Haar特征
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...
- 图像物体检測识别中的LBP特征
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/xinzhangyanxiang/article/details/37317863 图像物体检測识别中 ...
随机推荐
- logsource and ALO
1.首先配置sourcedb上的nfs服务,oggstd上挂载sourcedb的online redo和archive log的目录 oggsource上配置: vi /etc/export ...
- 洛谷P2197 nim游戏模板
Code: #include<iostream> using namespace std; int main(){ int t; cin>>t; while(t--){ int ...
- 微星(MSI)新主板B150M MORTAR U盘装win7的坎坷经历
新买的微星主板,热心的同事帮忙装好了win10,但是显卡驱动没装好,屏幕都快看瞎了眼,再者,楼主非常不喜欢win10的花哨,所以就装回了win7.下面来说一下我装win7的痛苦经历. 我是用UItra ...
- CF 986A Fair(多源BFS)
题目描述 一些公司将在Byteland举办商品交易会(or博览会?).在Byteland有 nnn 个城市,城市间有 mmm 条双向道路.当然,城镇之间两两连通. Byteland生产的货物有 kkk ...
- python中一些有用的函数------持续更新中
strip() 函数 用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列. str2 = " Runoob " # 去除首尾空格 print (str2.strip()) ...
- 【Henu ACM Round#20 B】Contest
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 根据时间和原分数. 算出对应的分数就可以了. [代码] #include <bits/stdc++.h> using n ...
- Java基础学习总结(29)——浅谈Java中的Set、List、Map的区别
就学习经验,浅谈Java中的Set,List,Map的区别,对JAVA的集合的理解是想对于数组: 数组是大小固定的,并且同一个数组只能存放类型一样的数据(基本类型/引用类型),JAVA集合可以存储和操 ...
- C++ 输出缓冲区的管理
在C++中,每个I/O对象管理一个缓冲区,用于存储程序读写的数据.本文将对输出缓冲区的管理进行简单的讲解. 举一个简单的例子: myOs << "Please enter a v ...
- static_cast 与 dynamic_cast
- C#文件拖放至窗口的ListView控件获取文件类型
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...