题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/

最长回文子串

给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串。

样例

给出字符串 "abcdzdcab",它的最长回文子串为 "cdzdc"

挑战

O(n2) 时间复杂度的算法是可以接受的,如果你能用 O(n) 的算法那自然更好。

一. 首先给出O(n^2)的算法

思路:dp[i][k]表示第i个位置开始长度为k的串的最大回文串的长度, j=i+k-1

     当 s[i] == s[j] && dp[i+1][k-2] == k-2,  dp[i][k] = dp[i+1][k-2] + 2;

     否则  dp[i][k] = max(dp[i+1][k-1], dp[i][k-1]);

     并记录dp[i][k]的最大值,最后找到最长回文子串的区间。

    int dp[][];
string longestPalindrome(string& s) {
// Write your code here
O(n^)
int len = s.size();
memset(dp, , sizeof(dp));
for(int i=; i<len; ++i)
dp[i][] = ;
int ld=, rd=, maxL = ;
for(int k=; k<=len; ++k){
for(int i=, j; i<len && (j=i+k-)<len; ++i){
if(s[i] == s[j] && dp[i+][k-] == k-)
dp[i][k] = dp[i+][k-] + ;
else
dp[i][k] = max(dp[i+][k-], dp[i][k-]);
if(maxL<dp[i][k]){
maxL = dp[i][k];
ld = i;
rd = j;
}
}
}
return s.substr(ld, rd-ld+);
}

二.然后看一下复杂度为O(n)的Manacher算法

2.1 先说一下这个算法的思想:

  用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i])。

2.2 算法基本要点:

  这个算法不能求出最长回文串长度为偶数回文串。用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在相邻两个字符之间插入一个特殊的符号。比如 abba 变成 a#b#b#a。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$a#b#b#a。

2.3 具体说一个例子:

  S[]     1  #  2  #  2  #  1  #  2  #  3  #  2  #  1
  P[]     1  1   2  1  2   1  4  1  2  1  5  1   2  1  1
  (p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)

2.4 为啥要对字符串进行处理(插入'#')

如果不对字符进行处理, 对于最长回文串为偶数的情况下:

  S[]     1  2  1  1  2  1
  P[]     1  2  1  1  2  1

对字符进行处理,对于最长回文串为偶数的情况下:

  S[]     1  #  2  #  1  #  1  #  2  #  1
  P[]     1  1   3  1  2  6   2  1  3  1  1

可见不对字符进行处理,对于最长回文串为偶数的情况是不能得到最大的回文串的长度。

2.5 如何计算P数组的值:

  算法增加两个辅助变量id和mx,其中id表示最大回文子串中心的位置,mx则为id+P[id],也就是最大回文子串的边界。

  当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。

              

  当 P[j] > mx - i 的时候,以S[j]为中心的回文子串不完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能一个一个匹配了。

              

  对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了。

2.6 寻找最大长度的回文子串:

  看一种情况:

    S[]     1  #  2  #  2  
    P[]     1  1   2  2  1

  首先, P中的最大值为2,但是最大值有两个,我们应该选择哪一个?其实,如果P中的最大值对应的字符不是'#',显然不能得到最大长度的回文串。所以当我们遇到这种情况时(maxP == P[i] && S[i]=='#')要更新最大值所在位置。

2.7 最后代码:

class Solution {
public:
/**
* @param s input string
* @return the longest palindromic substring
*/
string manacher(string& str){
int *p = new int[str.size()]();
memset(p, , sizeof(p));
int mx = , id = ;
for(int i=; i<str.size(); i++){
if(mx > i)
p[i] = min(p[*id-i], mx-i);
else
p[i] = ; while(str[i - p[i]] == str[i + p[i]])
++p[i]; if(i + p[i] > mx){
mx = i + p[i];
id = i;
}
}
//寻找数组P中的最大值的位置
int maxP = ;
for(int i=; i<str.size(); ++i)
if(maxP < p[i] || (maxP == p[i] && str[i]=='#')){
maxP = p[i];
id = i;
}
//根据id,确定最长回文串的区间
int ld = id-p[id]+, rd = id+p[id]-;
string ans = "";
for(int i=ld; i<=rd; ++i)
if(str[i]!='#')
ans += str[i];
return ans;
} string longestPalindrome(string& s) {
// Write your code here
//采用manacher算法,O(n)的时间复杂度
int len = s.size();
//首先预处理字符串,每两个字符之间插入'#'
int k = -;
for(int i=; i<len; ++i)
s.insert(k+=, , '#');
s.insert(, , '$');
return manacher(s);
}
};

lintcode最长回文子串(Manacher算法)的更多相关文章

  1. 九度OJ 1528 最长回文子串 -- Manacher算法

    题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...

  2. 最长回文子串—Manacher 算法 及 python实现

    最长回文子串问题:给定一个字符串,求它的最长回文子串长度.如果一个字符串正着读和反着读是一样的,那它就是回文串.   给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最 ...

  3. hihocoder #1032 : 最长回文子串 Manacher算法

    题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...

  4. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  5. HiHo 1032 最长回文子串 (Manacher算法求解)

    /** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...

  6. hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]

    传送门 #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相 ...

  7. 51nod1089 最长回文子串 manacher算法

    0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一个字符串正着读和反着读是一样的,那它就是回文串.下面是一些回文串的实例: 12321 a aba abba aaaa ...

  8. 最长回文子串Manacher算法模板

    Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 首先,在字符串s中,用rad[i]表示第i个字符 ...

  9. 求最长回文子串——Manacher算法

    回文串包括奇数长的和偶数长的,一般求的时候都要分情况讨论,这个算法做了个简单的处理把奇偶情况统一了.算法的基本思路是这样的,把原串每个字符中间用一个串中没出现过的字符分隔开来(统一奇偶),用一个数组p ...

随机推荐

  1. js数组与对象性能比较

    js的数组可以看成特殊的对象,获取指定项的行为跟获取对象中指定key对应项的行为是一致的. 一般都是hash map实现的,因而复杂度是常数级的.

  2. CSS Reset

    html, body, div, span, applet, object, iframe,h1, h2, h3, h4, h5, h6, p, blockquote, pre,a, abbr, ac ...

  3. Markdown Blog Testing

    # 测试一下markdown写法 貌似之前的文章不能再重新套用markdown语法了? 1 2 3

  4. bzoj1510: [POI2006]Kra-The Disks(单调栈)

    这道题可以O(n)解决,用二分还更慢一点 维护一个单调栈,模拟掉盘子的过程就行了 #include<stdio.h> #include<string.h> #include&l ...

  5. 学习建模 - UML

    最轻量级的工具下载地址 http://staruml.io/download 下载解压依赖:libgcrypt11 https://pan.baidu.com/s/1i3wb6M5 学习地址 http ...

  6. Permission denied user=hadoop access=WRITE inode=root rootsupergroup rwxr

    有段时间没有写了,反正我写的都是跟流水账一样.不为别人看,当然,其中也记录了很多我踩过的坑,可能也能给别人提个醒.最重要的是:这是我学习的记忆 上面的错误是由于我将reducer的输出目录设置在hdf ...

  7. 如何在Windows7上完全卸载Oracle 11g(转)

    http://blog.csdn.net/haishu_zheng/article/details/19180081

  8. thrift ssl 证书整理

    一.生成证书,所需机器数必须 >= 2(一台生成服务端证书,一台生成客户端证书),以下服务器以A表示服务端.B表示客户端来举例,thrift版本为0.7.01.自签名的证书的生成和测试 1)生成 ...

  9. C# DataSet

    一.基本概念 DataSet是ADO.NET的中心概念.可以把DataSet当成内存中的数据库,DataSet是不依赖于数据库的独立数据集合.所谓独立,就是说,即使断开数据链路,或者关闭数据库,Dat ...

  10. UI控件(UIScrollView)

    @implementation ViewController - (void)viewDidLoad { [super viewDidLoad]; //创建一个scrollview UIScrollV ...