what has been done:

This paper proposed a novel Deep Supervised Hashing method to learn a compact similarity-presevering binary code for the huge body of image data.

Data sets: 

CIFAR-10: 60,000 32*32 belonging to 10 mutually exclusively categories(6000 images per category)

NUS-WIDE: 269,648 from Flickr, warpped to 64*64

content based image retrieval: visually similar or semantically similar.

Traditional method: calculate the distance between the query image and the database images.

Problem: time and memory

Solution: hashing methods(map image to compact binary codes that approximately preserve the data structure in the original space)

Problem: performace depends on the features used, more suitable for dealing with the visiual similarity search rather than the sematically similarity search.

Solution: CNNs, the CNNs successful applications of CNNs in various tasks imply that the feature learned by CNNs can well capture the underlying sematic structure of images in spite of significant appearance variations.

Related works:

Locality Sensitive Hashing(LSH):use random projections to produce hashing bits

cons: requires long codes to achieve satisfactory performance.(large memory)

data-dependent hashing methods: unsupervised vs supervised

unsupervised methods: only make use of unlabelled training data to lean hash functions

  • spectral hashing(SH): minimizes the weighted hamming distance of image pairs
  • Iterative Quantization(ITQ): minimize the quantization error on projected image descriptors so as to allievate the information loss

supervised methods: take advantage of label inforamtion thus can preserve semantic similarity

  • CCA-ITQ: an extension of iterative quantization
  • predictable discriminative binary code: looks for hypeplanes that seperate categories with large margin as hash function.
  • Minimal Loss Hashing(MLH): optimize upper bound of a hinge-like loss to learn the hash functions

problem: the above methods use linear projection as hash functions and can only deal with linearly seperable data.

solution: supervised hashing with kernels(KSH) and Binary Reconstructive Embedding(BRE).

Deep hashing: exploits a non-linear deep networks to produce binary code.

Problem : most hash methods relax the binary codes to real-values in optimizations and quantize the model outputs to produce binary codes. However there is no guarantee that the optimal real-valued codes are still optimal after quantization .

Solution: DIscrete Graph Hashing(DGH) and Supervided Discrete Hashing(DSH) are proposed to directly optimize the binary codes.

Problem : Use hand crafted feature and cannot capture the semantic information.

Solution:   CNNs base hashing method

Our goal: similar images should be encoded to similar binary codes and the binary codes should be computed  efficiently.

Loss function:

Relaxation:

Implementation details:

Network structure:

3*卷积层:

3*池化层:

2*全连接层:

Training methodology:

  • generate images pairs online by exploiting all the image pairs in each mini-batch. Allivate the need to store the whole pair-wise similarity matrix, thus being scalable to large-scale data-sets.
  • Fine-tune vs Train from scratch

Experiment:

CIFAR-10

GIST descriptors for conventional hashing methods

NUS-WIDE

225-D normalized block-wise color moment features

Evalutaion Metrics

mAP: mean Average Precision

precision-recall curves(48-bit)

mean precision within Hamming radius 2 for different code lengths

Network ensembles? 

Comparison with state-of-the-art method

CNNH: trainin the model to fit pre-computed discriminative binary code. binary code generation and the network learning are isolated

CLBHC: train the model with a binary-line hidden layer as features for classification, encoding dissimilar images to similar binary code would not be punished.

DNNH: used triplet-based constraints to describe more complex semantic relations, training its networks become more diffucult due to the sigmoid non-linearlity and the parameterized piece-wise threshold function used in the output layer.

Combine binary code generation with network learning

Comparision of Encoding Time

【Paper Reading】Deep Supervised Hashing for fast Image Retrieval的更多相关文章

  1. 【Paper Reading】Learning while Reading

    Learning while Reading 不限于具体的书,只限于知识的宽度 这个系列集合了一周所学所看的精华,它们往往来自不只一本书 我们之所以将自然界分类,组织成各种概念,并按其分类,主要是因为 ...

  2. 【Paper Reading】Object Recognition from Scale-Invariant Features

    Paper: Object Recognition from Scale-Invariant Features Sorce: http://www.cs.ubc.ca/~lowe/papers/icc ...

  3. 【Paper Reading】Bayesian Face Sketch Synthesis

    Contribution: 1) Systematic interpretation to existing face sketch synthesis methods. 2) Bayesian fa ...

  4. 【Paper Reading】Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture Synthesis

    Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture ...

  5. 【资料总结】| Deep Reinforcement Learning 深度强化学习

    在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...

  6. 【文献阅读】Deep Residual Learning for Image Recognition--CVPR--2016

    最近准备用Resnet来解决问题,于是重读Resnet的paper <Deep Residual Learning for Image Recognition>, 这是何恺明在2016-C ...

  7. 【文献阅读】Augmenting Supervised Neural Networks with Unsupervised Objectives-ICML-2016

    一.Abstract 从近期对unsupervised learning 的研究得到启发,在large-scale setting 上,本文把unsupervised learning 与superv ...

  8. 【CS-4476-project 6】Deep Learning

    AlexNet / VGG-F network visualized by mNeuron. Project 6: Deep LearningIntroduction to Computer Visi ...

  9. 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition

    导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...

随机推荐

  1. JavaScript JSON简单操作(增删改)

    JavaScript 中对json处理: 声明;: var json={};或 json={"name":"asd","age":24}; ...

  2. vue 上传图片到阿里云(前端直传:不推荐)

    为何要这样做:减轻后端数据库压力(个人觉得于前端没啥用,谁返回来都行) 代码部分: <template> <div class="upLoad"> < ...

  3. 编写 Node.js Rest API 的 10 个最佳实践

    Node.js 除了用来编写 WEB 应用之外,还可以用来编写 API 服务,我们在本文中会介绍编写 Node.js Rest API 的最佳实践,包括如何命名路由.进行认证和测试等话题,内容摘要如下 ...

  4. 00068_Date类

    1.类Date表示特定的瞬间,精确到毫秒: 2.查阅Date类的描述,发现Date拥有多个构造函数,只是部分已经过时,但是其中有未过时的构造函数可以把毫秒值转成日期对象: //创建日期对象,把当前的毫 ...

  5. “王者对战”之 MySQL 8 vs PostgreSQL 10

    既然 MySQL 8 和 PostgreSQL 10 已经发布了,现在是时候回顾一下这两大开源关系型数据库是如何彼此竞争的. 在这些版本之前,人们普遍认为,Postgres 在功能集表现更出色,也因其 ...

  6. 回想四叉树LOD地形(上)

           唉.~事实上这是在差点儿相同一年前实现的东西,但当时没作好记录.放了那么久了,假设不做点总结的话,好像有点对不起自己,于是·········还是做点什么吧.        我脑洞比較小, ...

  7. 单机 &amp; 弱联网手游 防破解、金币改动 简单措施

    手游经常使用破解方法 对于一个弱联网或者单机游戏,能够从下面方面去破解: 1.找得到存档文件的,直接破解改动存档文件. 2.找不到存档文件,就在游戏执行时借助一些软件来改动数值,比方用各种改动器手游助 ...

  8. nor flash 和nand flash 傻傻分不清楚

    nor flash和nand flash差别 学习嵌入式有一段时间了,刚接触nor和nand时非常是迷惑.非要逼我写一篇博客才干记清楚. 首先他们都是存储设备.统称叫做flash memory.导致他 ...

  9. cocos2dx项目创建

    射击类游戏文档 作者:浙江传媒学院  新媒体  张勇 1>编译环境 首先我们先去cocos2dx官网上下载cocos2dx最新版本号 http://www.cocos2d-x.org/ 我下载的 ...

  10. Android应用之——微信微博第三方sdk登录分享使用过程中的一些常见问题

    前言 近期在使用第三方登录和分享的过程中遇到了非常多问题,一方面能够归结为自己经验的不足,还有一方面事实上也说明了官方文档的含糊不清.这篇博文不会写关于怎样使用第三方登录分享,由于官方文档已经写明了步 ...