what has been done:

This paper proposed a novel Deep Supervised Hashing method to learn a compact similarity-presevering binary code for the huge body of image data.

Data sets: 

CIFAR-10: 60,000 32*32 belonging to 10 mutually exclusively categories(6000 images per category)

NUS-WIDE: 269,648 from Flickr, warpped to 64*64

content based image retrieval: visually similar or semantically similar.

Traditional method: calculate the distance between the query image and the database images.

Problem: time and memory

Solution: hashing methods(map image to compact binary codes that approximately preserve the data structure in the original space)

Problem: performace depends on the features used, more suitable for dealing with the visiual similarity search rather than the sematically similarity search.

Solution: CNNs, the CNNs successful applications of CNNs in various tasks imply that the feature learned by CNNs can well capture the underlying sematic structure of images in spite of significant appearance variations.

Related works:

Locality Sensitive Hashing(LSH):use random projections to produce hashing bits

cons: requires long codes to achieve satisfactory performance.(large memory)

data-dependent hashing methods: unsupervised vs supervised

unsupervised methods: only make use of unlabelled training data to lean hash functions

  • spectral hashing(SH): minimizes the weighted hamming distance of image pairs
  • Iterative Quantization(ITQ): minimize the quantization error on projected image descriptors so as to allievate the information loss

supervised methods: take advantage of label inforamtion thus can preserve semantic similarity

  • CCA-ITQ: an extension of iterative quantization
  • predictable discriminative binary code: looks for hypeplanes that seperate categories with large margin as hash function.
  • Minimal Loss Hashing(MLH): optimize upper bound of a hinge-like loss to learn the hash functions

problem: the above methods use linear projection as hash functions and can only deal with linearly seperable data.

solution: supervised hashing with kernels(KSH) and Binary Reconstructive Embedding(BRE).

Deep hashing: exploits a non-linear deep networks to produce binary code.

Problem : most hash methods relax the binary codes to real-values in optimizations and quantize the model outputs to produce binary codes. However there is no guarantee that the optimal real-valued codes are still optimal after quantization .

Solution: DIscrete Graph Hashing(DGH) and Supervided Discrete Hashing(DSH) are proposed to directly optimize the binary codes.

Problem : Use hand crafted feature and cannot capture the semantic information.

Solution:   CNNs base hashing method

Our goal: similar images should be encoded to similar binary codes and the binary codes should be computed  efficiently.

Loss function:

Relaxation:

Implementation details:

Network structure:

3*卷积层:

3*池化层:

2*全连接层:

Training methodology:

  • generate images pairs online by exploiting all the image pairs in each mini-batch. Allivate the need to store the whole pair-wise similarity matrix, thus being scalable to large-scale data-sets.
  • Fine-tune vs Train from scratch

Experiment:

CIFAR-10

GIST descriptors for conventional hashing methods

NUS-WIDE

225-D normalized block-wise color moment features

Evalutaion Metrics

mAP: mean Average Precision

precision-recall curves(48-bit)

mean precision within Hamming radius 2 for different code lengths

Network ensembles? 

Comparison with state-of-the-art method

CNNH: trainin the model to fit pre-computed discriminative binary code. binary code generation and the network learning are isolated

CLBHC: train the model with a binary-line hidden layer as features for classification, encoding dissimilar images to similar binary code would not be punished.

DNNH: used triplet-based constraints to describe more complex semantic relations, training its networks become more diffucult due to the sigmoid non-linearlity and the parameterized piece-wise threshold function used in the output layer.

Combine binary code generation with network learning

Comparision of Encoding Time

【Paper Reading】Deep Supervised Hashing for fast Image Retrieval的更多相关文章

  1. 【Paper Reading】Learning while Reading

    Learning while Reading 不限于具体的书,只限于知识的宽度 这个系列集合了一周所学所看的精华,它们往往来自不只一本书 我们之所以将自然界分类,组织成各种概念,并按其分类,主要是因为 ...

  2. 【Paper Reading】Object Recognition from Scale-Invariant Features

    Paper: Object Recognition from Scale-Invariant Features Sorce: http://www.cs.ubc.ca/~lowe/papers/icc ...

  3. 【Paper Reading】Bayesian Face Sketch Synthesis

    Contribution: 1) Systematic interpretation to existing face sketch synthesis methods. 2) Bayesian fa ...

  4. 【Paper Reading】Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture Synthesis

    Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture ...

  5. 【资料总结】| Deep Reinforcement Learning 深度强化学习

    在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...

  6. 【文献阅读】Deep Residual Learning for Image Recognition--CVPR--2016

    最近准备用Resnet来解决问题,于是重读Resnet的paper <Deep Residual Learning for Image Recognition>, 这是何恺明在2016-C ...

  7. 【文献阅读】Augmenting Supervised Neural Networks with Unsupervised Objectives-ICML-2016

    一.Abstract 从近期对unsupervised learning 的研究得到启发,在large-scale setting 上,本文把unsupervised learning 与superv ...

  8. 【CS-4476-project 6】Deep Learning

    AlexNet / VGG-F network visualized by mNeuron. Project 6: Deep LearningIntroduction to Computer Visi ...

  9. 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition

    导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...

随机推荐

  1. 记录python爬取猫眼票房排行榜(带stonefont字体网页),保存到text文件,csv文件和MongoDB数据库中

    猫眼票房排行榜页面显示如下: 注意右边的票房数据显示,爬下来的数据是这样显示的: 网页源代码中是这样显示的: 这是因为网页中使用了某种字体的缘故,分析源代码可知: 亲测可行: 代码中获取的是国内票房榜 ...

  2. Python 纸牌游戏

    纸牌游戏 # card.py from random import shuffle class Card: # 黑桃,红桃,方块,梅花 suits = ['spades', 'hearts', 'di ...

  3. 出现$ref的原因及解决方案

    $ref的产生原因 (1)重复引用:一个集合/对象中的多个元素/属性都引用了同一个对象 (2)循环引用:集合/对象中的多个元素/属性在相互引用导致循环 针对fastjson的处理 fastjson作为 ...

  4. MVC笔记(一)

    1 MVC介绍 MVC是一个编程思想. 是一种设计模式 思想: 将一个功能分解成3个部分, M: Model (模型) 处理数据相关的逻辑 V: View (视图) 显示页面 C: Controlle ...

  5. (5)全局异常捕捉【从零开始学Spring Boot】

    在一个项目中的异常我们我们都会统一进行处理的,那么如何进行统一进行处理呢? 新建一个类GlobalDefaultExceptionHandler, 在class注解上@ControllerAdvice ...

  6. 洛谷 U249 匹配

    U249 匹配 题目描述 输入整数s和两个整数集合A和B,从这A和B中各取一个数,如果它们的和等于s,称为“匹配”.编程统计匹配的总次数 输入输出格式 输入格式: 第一行为三个整数s(0<s≤1 ...

  7. 用PHP去实现静态化

    我们在PHP站点开发过程中为了站点的推广或者SEO的须要,须要对站点进行一定的静态化,这里设计到什么是静态页面,所谓的静态页面.并非页面中没有动画等元素,而是指网页的代码都在页面中,即不须要再去执行P ...

  8. CCDirector导演类

    CCDirector类是Cocos2D-x游戏引擎的核心.它用来创建而且控制着屏幕的显示,同一时候控制场景的显示时间和显示方式. 在整个游戏里一般仅仅有一个导演.游戏的開始.结束.暂停都会调用CCDi ...

  9. SQLserver中用convert函数转换日期格式(2)

    ), ): :57AM ), ): ), ): ), ): ), ): ), ): ), ): ), ): , ), ): :: ), ): :::827AM ), ): ), ): ), ): ), ...

  10. Ubuntu 14.04安装Skype

    Skype 4.3版本在14.04 LTS工作正常.安装步骤: $ sudo apt-get remove skype skype-bin:i386 skype:i386 $ sudo apt-get ...