1. 基本概念(Momentum vs SGD)

Momentum 用于加速 SGD(随机梯度下降)在某一方向上的搜索以及抑制震荡的发生。

  • GD(gradient descent)

    θt=θt−1−η∇Jθ(θ)⇒θ=θ−η∇J(θ)
    for i in range(num_epochs):
    params_grad = evaluate_gradient(loss_function, data, params)
    params = params - learning_rate * params_grad
  • SGD(stochastic gradient descent)

    θt=θt−1−η∇Jθ(θ;x(i),y(i))⇒θ=θ−η∇J(θ;x(i),y(i))
    for i in range(num_epochs):
    np.random.shuffle(data)
    for example in data:
    params_grad = evaluate_gradient(loss_function, example, params)
    params = params - learning_rate * params_grad
  • Momentum(冲量/动量)

    vt=γvt−1+η∇θJ(θ)θ=θ−vt
    for i in range(num_epochs):
    params_grad = evaluate_gradient(loss_function, data, params)
    v = gamma*v + learning_rate*params_grad
    params = params - v

    γ 即为此处的动量,要求 γ<1,一般取 γ=0.9 或者更小的值,如本文第二节所示,还可以在迭代过程中设置可变的 γ

2. 可变动量设置

maxepoch = 50;
initialmomentum = .5;
finalmomentum = .9; for i = 1:maxepoch
...
if i < maxepoch/2
momentum = initialmomentum
else
momentum = finalmomentum
end
...
end

Momentum(动量/冲量)的理解及应用的更多相关文章

  1. 深度学习Momentum(动量方法)

    转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲 ...

  2. weight decay(权值衰减)、momentum(冲量)和normalization

    一.weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合.在损失函数中,weight decay是放在正则项(regularizat ...

  3. talib 中文文档(八): Momentum Indicator Functions 动量指标

    Momentum Indicator Functions ADX - Average Directional Movement Index 函数名:ADX 名称:平均趋向指数 简介:使用ADX指标,指 ...

  4. 深度学习网络结构中超参数momentum了解

    训练网络时,通常先对网络的初始权值按照某种分布进行初始化,如:高斯分布.初始化权值操作对最终网络的性能影响比较大,合适的网络初始权值能够使得损失函数在训练过程中的收敛速度更快,从而获得更好的优化结果. ...

  5. 优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam)

    优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam) 2019年05月29日 01:07:50 糖葫芦君 阅读数 455更多 ...

  6. 85-Momentum 动量指标.(2015.7.3)

    Momentum 动量指标 动量数值就是当天价格同前几个时段的价格的比率 MOMENTUM = CLOSE(i)/CLOSE(i-N)*100 注解: CLOSE(i) - 当前柱形的收市价格: CL ...

  7. [深度学习] pytorch学习笔记(3)(visdom可视化、正则化、动量、学习率衰减、BN)

    一.visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二.使 ...

  8. bp神经网络及matlab实现

    本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例  本文以Fisher的Iris数据集 ...

  9. 从Random Walk谈到Bacterial foraging optimization algorithm(BFOA),再谈到Ramdom Walk Graph Segmentation图分割算法

    1. 从细菌的趋化性谈起 0x1:物质化学浓度梯度 类似于概率分布中概率密度的概念.在溶液中存在不同的浓度区域. 如放一颗糖在水盆里,糖慢慢溶于水,糖附近的水含糖量比远离糖的水含糖量要高,也就是糖附近 ...

随机推荐

  1. codeforces 1037E. Trips(倒叙)

    题目传送门: 解题思路: 正着搞好像有点恶心. 反着搞. 一边删一边搞,从崩坏的地方开始,入度--. 最后dfs崩坏,更新答案. 注意要把边删掉防止重复崩坏. 代码: #include<cstd ...

  2. ASP.NET MVC案例教程(基于ASP.NET MVC beta)——第二篇:第一个页面

    摘要      本文首先一步一步完成Demo的第一个页面——首页.然后根据实现过程,说明一下其中用到的与ASP.NET MVC相关的概念与原理. 让第一个页面跑起来      现在,我们来实现公告系统 ...

  3. swiper轮播控件配置项

    var mySwiper = new Swiper ('.swiper-container', {    direction: 'horizontal',    loop: true,    auto ...

  4. ThinkPHP5.0的安装

    ThinkPHP5.0的安装很简单: 1.下载“phpstudy”安装 2.下载thinkphp源文件 3.把thinkphp源文件解压并放到phpstudy目录下的“WWW”目录 4.然后开启服务并 ...

  5. elementUI upload 对图片的宽高做校验

    很开心今天中午没有吃饭!原因是一直没有解决掉一个小问题,于是一直试错,最后看了下源码才有了点头绪,历时四五个小时才解决掉,有点怀疑自己的能力了,所以写下此文,记录一下今天的囧况!一般情况下遇到问题,自 ...

  6. Python 极简教程(三)数据类型

    每种语言都有各种数据类型.这就像在现实生活中,我们计数的时候需要用到数字,在表述金额.重量.距离等需要精确计数时用到小数,在日常交谈中要用文字,等等.在计算机语言中,为了表述不同的情况,也需要用到各种 ...

  7. uiview关联xib

    1,在需要实例的地方 //加载一个uiview的作法 [LotteryInvestigationView *lotteryInvestigationView=[[[NSBundle mainBundl ...

  8. 你说你会C++? —— 智能指针

    智能指针的设计初衷是:      C++中没有提供自己主动回收内存的机制,每次new对象之后都须要手动delete.稍不注意就memory leak. 智能指针能够解决上面遇到的问题. C++中常见的 ...

  9. Linux下交叉编译gdb,gdbserver+gdb的使用以及通过gdb调试core文件

    交叉编译gdb和gdbserver 1.下载gdb:下载地址为:http://ftp.gnu.org/gnu/gdb/按照一般的想法,最新版本越好,因此下载7.2这个版本.当然,凡事无绝对.我们以gd ...

  10. CSS垂直居中的实现

    这个问题可以说是老生常谈了,面试时经常问道,一直没整理过,这次做个系统梳理 1.利用display:table实现 从caniuse.com上查到,display:table可以兼容到IE8,以目前环 ...