题意

在线区间众数

思路

预处理出 f[i][j] 即从第 i 块到第 j 块的答案。
对于每个询问,中间的整块直接用预处理出的,两端的 sqrtn 级别的数暴力做,用二分查找它们出现的次数。
每次询问的复杂度是 sqrtn * logn 。

 #include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
const int N=;
vector<int> vec[N];
int n,m,a[N],b[N],block[N],ans,Block,L[N],R[N],cnt[N],top,stack[N],f[][],ff[][],tot;
int find1(int x,int y){
int l=;int r=vec[x].size()-;
int tmp=-;
while(l<=r){
int mid=(l+r)>>;
if(vec[x][mid]<=y){
tmp=mid;
l=mid+;
}
else r=mid-;
}
return tmp;
}
int find2(int x,int y){
int l=;int r=vec[x].size()-;
int tmp=;
while(l<=r){
int mid=(l+r)>>;
if(vec[x][mid]>=y){
tmp=mid;
r=mid-;
}
else l=mid+;
}
return tmp;
}
int main(){
scanf("%d%d",&n,&m);
Block=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+,b++n);
int num=unique(b+,b++n)-b-;
for(int i=;i<=n;i++){
a[i]=lower_bound(b+,b++num,a[i])-b;
block[i]=(i-)/Block+;
vec[a[i]].push_back(i);
if(!L[block[i]])L[block[i]]=i;
R[block[i]]=i;
}
for(int i=;i<=block[n];i++){
tot=;
for(int j=L[i];j<=n;j++){
cnt[a[j]]++;
if(tot<=cnt[a[j]]){
if(cnt[a[j]]>tot)ans=b[a[j]];
else ans=min(ans,b[a[j]]);
tot=cnt[a[j]];
}
f[i][block[j]]=tot;
ff[i][block[j]]=ans;
}
for(int j=L[i];j<=n;j++){
cnt[a[j]]=;
}
}
ans=;
for(int i=;i<=m;i++){
int l,r;
scanf("%d%d",&l,&r);
l=(l+ans-)%n+;r=(r+ans-)%n+;
if(l>r)swap(l,r);
if(block[l]+>=block[r]){
tot=;
ans=;
for(int i=l;i<=r;i++){
cnt[a[i]]++;
if(tot<=cnt[a[i]]){
if(cnt[a[i]]>tot)ans=b[a[i]];
else ans=min(ans,b[a[i]]);
tot=cnt[a[i]];
}
}
for(int i=l;i<=r;i++){
cnt[a[i]]=;
}
}
else{
top=;
tot=f[block[l]+][block[r]-];
ans=ff[block[l]+][block[r]-];
for(int i=l;i<=R[block[l]];i++){
cnt[a[i]]++;
if(cnt[a[i]]==)stack[++top]=a[i];
}
for(int i=L[block[r]];i<=r;i++){
cnt[a[i]]++;
if(cnt[a[i]]==)stack[++top]=a[i];
}
while(top){
int z=stack[top--];
int tmp=max(,find1(z,L[block[r]]-)-find2(z,R[block[l]]+)+);
if(tot<=cnt[z]+tmp){
if(cnt[z]+tmp>tot)ans=b[z];
else ans=min(ans,b[z]);
tot=cnt[z]+tmp;
}
cnt[z]=;
}
}
printf("%d\n",ans);
}
return ;
}

BZOJ 2724 [Violet 6]蒲公英(分块)的更多相关文章

  1. BZOJ 2724: [Violet 6]蒲公英( 分块 )

    虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...

  2. BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]

    传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...

  3. BZOJ 2724: [Violet 6]蒲公英

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1633  Solved: 563[Submit][Status ...

  4. [BZOJ 2724] [Violet 6] 蒲公英 【分块】

    题目链接:BZOJ - 2724 题目分析 这道题和 BZOJ-2821 作诗 那道题几乎是一样的,就是直接分块,每块大小 sqrt(n) ,然后将数字按照数值为第一关键字,位置为第二关键字排序,方便 ...

  5. BZOJ.2724.[Violet 6]蒲公英(静态分块)

    题目链接 区间众数 强制在线 考虑什么样的数会成为众数 如果一个区间S1的众数为x,那么S1与新区间S2的并的众数只会是x或S2中的数 所以我们可以分块先预处理f[i][j]表示第i到第j块的众数 对 ...

  6. 【刷题】BZOJ 2724 [Violet 6]蒲公英

    Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 Output Sample Input ...

  7. 【BZOJ 2724】 2724: [Violet 6]蒲公英 (区间众数不带修改版本)

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1908  Solved: 678 Description In ...

  8. 【BZOJ】2724: [Violet 6]蒲公英

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 2900  Solved: 1031[Submit][Statu ...

  9. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

随机推荐

  1. Java序列化注意事项

    当父类继承Serializeble接口时,所有子类可以被序列化 子类实现了Serializeble接口,父类没有,父类中的属性不能序列化(不报错,数据会丢失),但是在子类中属性仍能正确序列化 如果序列 ...

  2. 你不知道的JavaScript(二)数组

    作为一种线性数据结构,几乎每一种编程语言都支持数组类型.和c++.java这些强类型的语言相比,JavaScript数组有些不同,它可以存放任意类型的值.上节中有提到过JS中任意类型的值都可以赋值给任 ...

  3. (转载)android 一些工具类汇总

    android 一些工具类汇总 作者:曾田生z 字体:[增加 减小] 类型:转载 时间:2016-08-14我要评论 本文给大家汇总介绍了一些常用的Android工具类,非常的简单实用,有需要的小伙伴 ...

  4. Codeforces 988E. Divisibility by 25

    解题思路: 只有尾数为25,50,75,00的数才可能是25的倍数. 对字符串做4次处理,以25为例. a. 将字符串中的最后一个5移到最后一位.计算交换次数.(如果没有找到5,则不可能凑出25,考虑 ...

  5. Caffe Loss分析

    Caffe_Loss 损失函数为深度学习中重要的一个组成部分,各种优化算法均是基于Loss来的,损失函数的设计好坏很大程度下能够影响最终网络学习的好坏.派生于 \(LossLayer\),根据不同的L ...

  6. 使用python绘制词云

    最近在忙考试的事情,没什么时间敲代码,一个月也没几天看代码,最近看到可视化的词云,看到网上也很多这样的工具, 但是都不怎么完美,有些不支持中文,有的中文词频统计得莫名其妙.有的不支持自定义形状.所有的 ...

  7. 手工备份恢复oracle数据库

     手工备份恢复oracle数据库: 虽然已经有了rman工具 但是手工恢复oracle能够让你对oracle数据库有更加深入的了解 数据库一致性开机条件: 数据文件 scn,控制文件 scn,redo ...

  8. Python3基础笔记---面向对象

    只是对一些新的知识的记录 1.创建类 class ClassName: <statement-1> . . . <statement-N> 类实例化后,可以使用其属性,实际上, ...

  9. Vrtualbox虚拟机中共享文件夹配置

    虚拟机装的是ubuntu 16.0.4版本的linux,本机是macOs 10.12.1版本 Vrtualbox进行如下配置 在Vrtualbox-->设置-->共享文件夹-->添加 ...

  10. 安装 glusterfs yum源报错

    yum install glusterfs-server yum 一直报错 把/etc/yum.repos.d 备份 删除了所有文件,从测试机192..168.59.128上同步过来 一直报错 已加载 ...