[JZOJ4687]奇袭
[JZOJ4687]奇袭
题目
由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上要迎来最终的压力测试——魔界入侵。
唯一一个神一般存在的Administrator被消灭了,靠原本的整合骑士的力量是远远不够的。所以爱丽丝动员了UW全体人民,与整合骑士一起抗击魔族。
在UW的驻地可以隐约看见魔族军队的大本营。整合骑士们打算在魔族入侵前发动一次奇袭,袭击魔族大本营!
为了降低风险,爱丽丝找到了你,一名优秀斥候,希望你能在奇袭前对魔族大本营进行侦查,并计算出袭击的难度。
经过侦查,你绘制出了魔族大本营的地图,然后发现,魔族大本营是一个N×N的网格图,一共有N支军队驻扎在一些网格中(不会有两只军队驻扎在一起)。
在大本营中,每有一个k×k(1≤k≤N)的子网格图包含恰好k支军队,我们袭击的难度就会增加1点。
现在请你根据绘制出的地图,告诉爱丽丝这次的袭击行动难度有多大。
输入保证每一行和每一列都恰有一只军队。INPUT
第一行,一个正整数N,表示网格图的大小以及军队数量。
接下来N行,每行两个整数,Xi,Yi,表示第i支军队的坐标。
保证每一行和每一列都恰有一只军队,即每一个Xi和每一个Yi都是不一样 的。
OUTPUT
一行,一个整数表示袭击的难度。
SAMPLE
INPUT
5
1 1
3 2
2 4
5 5
4 3
OUTPUT
10
解题报告
考试打了一个二维树状数组= =
正解:
我们考虑:
保证每一行和每一列都恰有一只军队,即每一个$X_{i}$和每一个$Y_{i}$都是不一样的。
这是这道题的关键,既然每一个$X_{i}$与每一个$Y_{i}$都是不一样的,那么我们就想,我们是否可以把二维压成一维?
自然可以。
以横坐标为下标,纵坐标为关键字,我们实际上就得到了一个$1$到$n$的排列
那么要求的值就转化为:
在区间$[L,R]$中,满足$max(L,R)-min(L,R)==R-L$的区间的个数
想想为什么?
我们要求的是在$k\times k$的矩阵中,恰有$k$个军队的矩阵数目
我们假设我们取的子网格图为以$(a,b)$为左上顶点的$k\times k$子网格,这$k$个军队所在坐标为$(x_{i},y_{i})$那么显然,在这第$a$行到第$a+k-1$行中,每一行的军队都应在$[b,b+k-1]$的区间中
即:
$$max(y_{i})=b+k-1,min(y_{i})=b$$
当我们将其压成一维后,自然就得到了上面的结论
重点在于如何处理这个值
我们考虑分治,就得到$ans[L,R]=ans[L,MID]+ans[MID+1]+ans[...]$
其中,$ans[...]$代表跨越$MID$的区间的答案
我们完全可以处理出每个位置到$MID$的最大值及最小值,那么就可以应用上述的式子了
对于跨越中间的区间的答案,我们可以看作两种情况:
- 最值在$MID$同侧
- 最值在$MID$异侧
其中,左右颠倒的情况基本是互相对称的,所以我们只详细讨论其中两种
当最值同在左侧时:
我们枚举一个$l$作为区间左端点,由上述式子可推知:$r=l+max(l,mid)-mid(l,mid)$(移项就出来了)
然后就可以判断该右端点的合法性
首先,当$r<=mid$时,该$r$不合法,因为该区间就没有跨越$MID$,并不属于讨论的大前提
然后,我们已经确定了此时的$max$与$min$,所以我们还需判断该$r$是否对其产生影响
即:
$$max(MID+1,r)<max(l,MID)$$
$$min(MID+1,r)>min(l,MID)$$
最值同在右侧:
对称一下
枚举右端点,算左端点,判断是否合法
最小值在左侧,最大值在右侧:
枚举左端点$l$,显然,$max(MID+1,i)(i>MID)$随着$i$增大是单调不下降的(因为新加入的值只可能在比当前$max$大时才会更新该值,否则该值不变,故单调不下降)
同理,$min(MID+1,i)(i>MID)$单调不上升
我们可以建两个指针$r1,r2$,用$r1$与$r2$中间所有点为合法右端点
我们令$r2$满足$min(MID+1,r2)>min(l,MID)$,以满足$min$在左侧
再令$r1$满足$max(MID+1,r1-1)<max(l,MID)$,以使$[MID+1,r1-1]$为不合法的右端点区间
这样就可以保证$[r1,r2]$为合法右端点的区间
剩下的就是统计个数了
还是上面的式子:$max(l,r)-min(l,r)=r-l$
移项:$max(l,r)-r=min(l,r)-l$
即:$max(MID+1,r)-r=min(l,MID)-l$
我们可以用桶来实现,对于$r2$,我们把$max(MID+1,r2)-r2$扔进桶里,对于移动前的$r1$,我们把$max(MID+1,r1)-r1$从桶里扔出来
注意桶的清空以及保证$r1<=r2$
最大值在左侧,最小值在右侧:
对称一下
枚举右端点
读者可以自行移项推一下这种情况的式子(反正底下代码里也有)
这样就可以在$O(nlog_{2}n)$的时间复杂度内解决问题了
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
inline int read(){
int sum();
char ch(getchar());
for(;ch<''||ch>'';ch=getchar());
for(;ch>=''&&ch<='';sum=sum*+(ch^),ch=getchar());
return sum;
}
const int N();
const int ADD=N<<;
typedef long long L;
int n;
int a[N];
int mxl[N],mxr[N],mnl[N],mnr[N];
L tong[ADD<<];
inline L cal(int l,int r){
if(l==r)
return ;
int mid((l+r)>>);
L ret();
mxl[mid]=mnl[mid]=a[mid];
mxr[mid+]=mnr[mid+]=a[mid+];
for(int i=mid-;i>=l;--i)
mxl[i]=max(mxl[i+],a[i]),mnl[i]=min(mnl[i+],a[i]);
for(int i=mid+;i<=r;++i)
mxr[i]=max(mxr[i-],a[i]),mnr[i]=min(mnr[i-],a[i]);
for(int i=mid;i>=l;--i){
int pos(mxl[i]-mnl[i]+i);
if(pos<=mid||pos>r)
continue;
if(mnr[pos]>mnl[i]&&mxr[pos]<mxl[i])
++ret;
}
for(int i=mid+;i<=r;++i){
int pos(mnr[i]-mxr[i]+i);
if(pos>mid||pos<l)
continue;
if(mnl[pos]>mnr[i]&&mxl[pos]<mxr[i])
++ret;
}
int r1(mid+),r2(mid);
for(int i=mid;i>=l;--i){
while(mnr[r2+]>mnl[i]&&r2<r){
++r2;
++tong[mxr[r2]-r2+ADD];
}
while(mxl[i]>mxr[r1]){
--tong[mxr[r1]-r1+ADD];
++r1;
if(r1>r)
break;
}
if(r1>r)
break;
if(r1<=r2)
ret+=tong[mnl[i]-i+ADD];
}
for(int i=l;i<=mid;++i)
tong[mnl[i]-i+ADD]=;
for(int i=mid+;i<=r;++i)
tong[mxr[i]-i+ADD]=;
int l1(mid),l2(mid+);
for(int i=mid+;i<=r;++i){
while(mnl[l2-]>mnr[i]&&l2>l){
--l2;
++tong[mxl[l2]+l2+ADD];
}
while(mxr[i]>mxl[l1]){
--tong[mxl[l1]+l1+ADD];
--l1;
if(l1<l)
break;
}
if(l1<l)
break;
if(l2<=l1)
ret+=tong[mnr[i]+i+ADD];
}
for(int i=l;i<=mid;++i)
tong[mxl[i]+i+ADD]=;
for(int i=mid+;i<=r;++i)
tong[mnr[i]+i+ADD]=;
return ret;
}
inline L ef(int l,int r){
if(l==r)
return ;
int mid((l+r)>>);
return cal(l,r)+ef(l,mid)+ef(mid+,r);
}
int main(){
n=read();
for(int i=;i<=n;++i){
int x(read()),y(read());
a[x]=y;
}
printf("%lld\n",ef(,n));
}
ps:注意在减的时候下标可能出负数,自行处理一下即可
[JZOJ4687]奇袭的更多相关文章
- 奇袭(单调栈+分治+桶排)(20190716 NOIP模拟测试4)
C. 奇袭 题目类型:传统 评测方式:文本比较 内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而 ...
- 9.5 考试 第三题 奇袭题解(codeforce 526f)
问题 C: 奇袭 时间限制: 1 Sec 内存限制: 256 MB 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上 要迎来最终的压力测试——魔界入侵. 唯 ...
- 7.16 NOIP模拟测试4 礼物+通讯+奇袭
T1 礼物 题目大意:n个物品,每次有pi的概率买到,可以重复买,也可以什么都没买到,但算一次购买,问把所有东西都买到的期望次数.对于10%的数据,N = 1;对于30%的数据,N ≤ 5;对于100 ...
- 【NOIP2016提高A组8.12】奇袭
题目 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上要迎来最终的压力测试--魔界入侵. 唯一一个神一般存在的Administrator被消灭了,靠原本的整合骑士的力量 ...
- 模拟4题解 T3奇袭
T3奇袭 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上 要迎来最终的压力测试——魔界入侵. 唯一一个神一般存在的Administrator被消灭了,靠原本 ...
- [***]HZOJ 奇袭
C. 奇袭 题目描述 由于各种原因,桐人现在被困在Under World(以下简称UW)中,而UW马上 要迎来最终的压力测试——魔界入侵. 唯一一个神一般存在的Administrator被消灭了,靠原 ...
- 非确定性有穷状态决策自动机练习题Vol.2 C. 奇袭
非确定性有穷状态决策自动机练习题Vol.2 C. 奇袭 题目描述 由于各种原因,桐人现在被困在\(Under World\)(以下简称\(UW\))中,而\(UW\)马上 要迎来最终的压力测试--魔界 ...
- NOIP模拟测试4「礼物·通讯·奇袭」
礼物. 首先见到期望一定要想dp,看到n的范围无脑想状压, 然后我就只想到这了. dp方程式还是比较好想的,但是我依然想不出来 略经思考 颓题解 依然不会,随便写了个式子 i状态中不含j $f[i ...
- WEB安全第六篇--千里之外奇袭客户端:XSS和HTML注入
零.前言 最近做专心web安全有一段时间了,但是目测后面的活会有些复杂,涉及到更多的中间件.底层安全.漏洞研究与安全建设等越来越复杂的东东,所以在这里想写一个系列关于web安全基础以及一些讨巧的pay ...
随机推荐
- LuoguP4462 [CQOI2018]异或序列
https://zybuluo.com/ysner/note/1124952 题面 给你一个大小为\(n\)的序列,然后给你一个数字\(k\),再给出\(m\)组询问,询问给出一个区间,问这个区间里面 ...
- es6 import 与 export
1.export 命令 export 命令用于规定模块的对外接口. 一个模块就是一个独立的文件.该文件内部所有的变量,外部无法获取.要想外部能够读取模块内部的某个变量,就必须使用 export 关键字 ...
- DOM对象,控制HTML元素(1)
1:getElementsByName(name)方法 它是通过元素的name属性来查询元素,而不是通过id属性.getElementById()方法是通过元素的id属性来获取元素的. 注意: 该方法 ...
- 湖南集训day4
难度:☆☆☆☆☆☆☆ 题解: 有个定理,另sum(x)表示小于等于x的数中与x互质的数的和 sum(x)=φ(x)*x/2 最后可知f(x)=x (f(1)=2) 当然打表能知道. 然后就转 ...
- Java里边什么是值传递和引用传递?两个有什么区别
学过java基础的人都知道,在java中参数的传递过程中有值传递和应用传递,那么这两个到底有什么区别呢,下面我通过例子为大家详细的介绍下. 我们都知道Java中有八种数据类型,基础数据类型分别是:by ...
- 音频处理中的尺度--Bark尺度与Mel尺度
由于人耳对声音的感知(如:频率.音调)是非线性的,为了对声音的感知进行度量,产生了一系列的尺度(如:十二平均律),这里重点说下Bark尺度与Mel尺度.刚开始的时候,我自己也没弄明白这两个尺度的区别. ...
- 数据库部署到linux服务器,供本地访问。
1. 将本地的sql文件上传至服务器 scp /Users/fangke/Documents/article.sql root@IP:/usr/local 2. 登陆服务器的mysql 3. 创建数 ...
- Spark 概念学习系列之Spark基本概念和模型(十八)
打好基础,别小瞧它! spark的运行模式多种多样,在单机上既可以本地模式运行,也可以伪分布模式运行.而当以分布式的方式在集群中运行时.底层的资源调度可以使用Mesos或者Yarn,也可使用spark ...
- Bootstrap3模态框Modal垂直居中样式
1,Bootstrap 模态框插件Bootbox垂直居中样式: <!DOCTYPE html> <html lang="en"> <head> ...
- css图片特效
网站图片往往有很多显示效果,使用css是实现图片特效的比较简便的方式.下面记录一段css鼠标指向的多重特效: <!DOCTYPE html><html lang="en&q ...