EOJ Monthly 2019.2 E 中位数 (二分+中位数+dag上dp)
题意:
一张由 n 个点,m 条边构成的有向无环图。每个点有点权 Ai。QQ 小方想知道所有起点为 1 ,终点为 n 的路径中最大的中位数是多少。
一条路径的中位数指的是:一条路径有 n 个点,将这 n 个点的权值从小到大排序后,排在位置 ⌊n2⌋+1 上的权值。
思路(官方题解):
考虑二分答案,我们需要验证路径最大的中位数是否 ≥mid 。
我们把所有的点权做 −1/1 变换,即 ≥mid 的点权变为 1 ,否则变为 −1 。
根据题面路径中位数的定义,我们可以发现,如果这条路径的中位数 ≥mid ,那么做了 −1/1 变换以后,这条路径上的点权和 ≥0 。
而我们现在需要知道的问题是路径最大的中位数是否 ≥mid ,也就是说,最大的路径点权是否 ≥0 。
跑一遍最长路就好了。而对于 DAG ,最长路只要 dp 一下,复杂度是保证 O(m) 。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<cmath>
#include<functional> #define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const db eps = 1e-;
const int mod = 1e9+;
const int maxn = 1e6+;
const int maxm = 1e6+;
const int inf = 0x3f3f3f3f; int a[maxn];
int b[maxn];
vector<int>v[maxn];
int dp[maxn];
int n,m;
int c(int x, int mid){
return a[x]>=mid?:-;
}
void dpp(int x, int va,int mid){
//printf("%d %d %d\n",x,va,mid);
if(va<=dp[x])return;
dp[x] = max(dp[x],va);
//if(x==n)return;
for(int i = ; i < (int)v[x].size(); i++){
dpp(v[x][i], va+c(v[x][i],mid),mid);
}
return;
}
bool ck(int x){
//x = b[x];
for(int i = ; i <= n; i++)dp[i]=-0x3f3f3f3f;
dpp(,c(,x),x); if(dp[n]>=)return true;
return false;
}
int main(){
scanf("%d %d",&n,&m);
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
}
for(int i = ; i <= m; i++){
int x, y;
scanf("%d %d", &x, &y);
v[x].pb(y);
}
//printf("%d",ck(5));
int l = , r = 1e9;
int ans=-;
while(l<=r){
int mid = (r+l)>>;
//printf("%d %d %d\n",l,r,mid);
if(ck(mid)){
l = mid+;
ans=mid;
}
else r = mid-;
}
printf("%d", ans);
return ;
}
EOJ Monthly 2019.2 E 中位数 (二分+中位数+dag上dp)的更多相关文章
- EOJ Monthly 2019.2 题解(B、D、F)
EOJ Monthly 2019.2 题解(B.D.F) 官方题解:https://acm.ecnu.edu.cn/blog/entry/320/ B. 解题 单测试点时限: 2.0 秒 内存限制: ...
- EOJ Monthly 2019.2 E. 中位数 (二分+dfs)
题目传送门 题意: 在一个n个点,m条边的有向无环图中,求出所有从1到n 的路径的中位数的最大值 一条路径的中位数指的是:一条路径有 n 个点, 将这 n 个点的权值从小到大排序后,排在位置 ⌊n2⌋ ...
- EOJ Monthly 2019.2
题解 A 回收卫星 #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include<bits/s ...
- EOJ Monthly 2019.11 E. 数学题(莫比乌斯反演+杜教筛+拉格朗日插值)
传送门 题意: 统计\(k\)元组个数\((a_1,a_2,\cdots,a_n),1\leq a_i\leq n\)使得\(gcd(a_1,a_2,\cdots,a_k,n)=1\). 定义\(f( ...
- EOJ Monthly 2019.2 A. 回收卫星
题目传送门 题意: 你可以询问一个三维坐标,机器会告诉你这个坐标在不在目标圆中, 并且(0,0,0)是一定在圆上的,叫你求出圆心坐标 思路: 因为(0,0,0)一定在圆上,所以我们可以把圆心分成3个坐 ...
- EOJ Monthly 2019.2 (based on February Selection) F.方差
题目链接: https://acm.ecnu.edu.cn/contest/140/problem/F/ 题目: 思路: 因为方差是用来评估数据的离散程度的,因此最优的m个数一定是排序后连续的,所以我 ...
- EOJ Monthly 2019.2 (based on February Selection) D.进制转换
题目链接: https://acm.ecnu.edu.cn/contest/140/problem/D/ 题目: 思路: 我们知道一个数在某一个进制k下末尾零的个数x就是这个数整除kx,这题要求刚好末 ...
- EOJ Monthly 2019.2 (based on February Selection) D 进制转换 【数学 进制转换】
任意门:https://acm.ecnu.edu.cn/contest/140/problem/D/ D. 进制转换 单测试点时限: 2.0 秒 内存限制: 256 MB “他觉得一个人奋斗更轻松自在 ...
- EOJ Monthly 2019.1 唐纳德先生与这真的是签到题吗 【数学+暴力+multiset】
传送门:https://acm.ecnu.edu.cn/contest/126/ C. 唐纳德先生与这真的是签到题吗 单测试点时限: 6.0 秒 内存限制: 1024 MB 唐纳德先生在出月赛的过程中 ...
随机推荐
- Linux环境下部署svn服务详解
说明 环境: 操作系统:centos 8.0 IP:39.100.228.13 安装 用ROOT账号登录,在控制台执行以下命令,一直默认安装就好可以了. [root@localhost ~]#yum ...
- Linux下扫描服务器IP地址是否冲突(arp-scan)
部署服务突然发现,连接的服务器断开了,因为服务器用户名密码是一样的,所以重新连接后,发现文件变了,跟之前不一样. 猜想是不是ip地址冲突了,两次连接的服务器不同. 网上查找资料说可以用工具扫描.工具: ...
- 比特币学习笔记(一)---在windows下编译搭建比特币环境
最近打算研究下比特币源码,却发现这套源码正常情况下得在linux下编译运行,而我的机器是windows的. 怎么办呢? 起初打算用mingw和cygwin搞搞看,试了许久后发现行不通,必须转到linu ...
- 【转】c#中数组赋值方法
C#中数组复制有多种方法,数组间的复制 ,,,};int [] alias = pins; 这里出了错误,也是错误的根源,以上代码并没有出错,但是根本不是复制,因为pins和alias都是引用,存在于 ...
- TypeScript 源码详细解读(1)总览
TypeScript 由微软在 2012 年 10 月首发,经过几年的发展,已经成为国内外很多前端团队的首选编程语言.前端三大框架中的 Angular 和 Vue 3 也都改用了 TypeScript ...
- 微信授权流程和JSSDK调用流程
概念理解 业务域名:当前业务使用的是哪个网站,好处:设置业务域名后,在微信内访问该域名下页面时,不会被重新排版.不出现“防欺诈盗号,请误支付或输入qq密码”的提示,微信认为该域名是安全的,客户也不觉得 ...
- 用PHP写下HELLO WORLD!
一.选择PHP开发工具 1.phpstorm最新版本 2.打开phpstorm界面 按create键,选择new window ,出下如下页面: 鼠标放在文件夹上,右键单击,弹出以下对话框:做如下操作 ...
- Java入门 - 面向对象 - 05.封装
原文地址:http://www.work100.net/training/java-encapsulation.html 更多教程:光束云 - 免费课程 封装 序号 文内章节 视频 1 概述 2 封装 ...
- Data for the People: How to Make Our Post-Privacy Economy Work for You
等翻译成 chinese在看吧
- 英语学习app——Alpha发布1
英语学习app--Alpha发布1 这个作业属这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/GeographicInformationScience/ ...