FFmpeg—— Bitstream Filters 作用
原文链接:
https://stackoverflow.com/questions/32028437/what-are-bitstream-filters-in-ffmpeg
Let me explain by example. FFmpeg video decoders typically work by converting one video frame per call to avcodec_decode_video2. So the input is expected to be "one image" worth of bitstream data. Let's consider this issue of going from a file (an array of bytes of disk) to images for a second.
For "raw" (annexb) H264 (.h264/.bin/.264 files), the individual nal unit data (sps/pps header bitstreams or cabac-encoded frame data) is concatenated in a sequence of nal units, with a start code (00 00 01 XX) in between, where XX is the nal unit type. (In order to prevent the nal data itself to have 00 00 01 data, it is RBSP escaped.) So a h264 frame parser can simply cut the file at start code markers. They search for successive packets that start with and including 00 00 01, until and excluding the next occurence of 00 00 01. Then they parse the nal unit type and slice header to find which frame each packet belongs to, and return a set of nal units making up one frame as input to the h264 decoder.
H264 data in .mp4 files is different, though. You can imagine that the 00 00 01 start code can be considered redundant if the muxing format already has length markers in it, as is the case for mp4. So, to save 3 bytes per frame, they remove the 00 00 01 prefix. They also put the PPS/SPS in the file header instead of prepending it before the first frame, and these also miss their 00 00 01 prefixes. So, if I were to input this into the h264 decoder, which expects the prefixes for all nal units, it wouldn't work. The h264_mp4toannexb bitstream filter fixes this, by identifying the pps/sps in the extracted parts of the file header (ffmpeg calls this "extradata"), prepending this and each nal from individual frame packets with the start code, and concatenating them back together before inputting them in the h264 decoder.
You might now feel that there's a very fine line distinction between a "parser" and a "bitstream filter". This is true. I think the official definition is that a parser takes a sequence of input data and splits it in frames without discarding any data or adding any data. The only thing a parser does is change packet boundaries. A bitstream filter, on the other hand, is allowed to actually modify the data. I'm not sure this definition is entirely true (see e.g. vp9 below), but it's the conceptual reason mp4toannexb is a BSF, not a parser (because it adds 00 00 01 prefixes).
Other cases where such "bitstream tweaks" help keep decoders simple and uniform, but allow us to support all files variants that happen to exist in the wild:
- mpeg4 (divx) b frame unpacking (to get B-frames sequences like IBP, which are coded as IPB, in AVI and get timestamps correct, people came up with this concept of B-frame packing where I-B-P / I-P-B is packed in frames as I-(PB)-(), i.e. the third packet is empty and the second has two frames. This means the timestamp associated with the P and B frame at the decoding phase is correct. It also means you have two frames worth of input data for one packet, which violates ffmpeg's one-frame-in-one-frame-out concept, so we wrote a bsf to split the packet back in two - along with deleting the marker that says that the packet contains two frames, hence a BSF and not a parser - before inputting it into the decoder. In practice, this solves otherwise hard problems with frame multithreading. VP9 does the same thing (called superframes), but splits frames in the parser, so the parser/BSF split isn't always theoretically perfect; maybe VP9's should be called a BSF)
- hevc mp4 to annexb conversion (same story as above, but for hevc)
- aac adts to asc conversion (this is basically the same as h264/hevc annexb vs. mp4, but for aac audio)
AVBitStreamFilterContext *av_bitstream_filter_init(const char *name);
int av_bitstream_filter_filter(AVBitStreamFilterContext *bsfc,
AVCodecContext *avctx, const char *args,
uint8_t **poutbuf, int *poutbuf_size,
const uint8_t *buf, int buf_size, int keyframe);
新版需要使用如下API实现功能:
// Get filter
const AVBitStreamFilter *av_bsf_next(void **opaque);
const AVBitStreamFilter *av_bsf_get_by_name(const char *name); // Init filter
int av_bsf_alloc(const AVBitStreamFilter *filter, AVBSFContext **ctx);
int avcodec_parameters_copy(AVCodecParameters *dst, const AVCodecParameters *src);
int av_bsf_init(AVBSFContext *ctx); // Use filter
int av_bsf_send_packet(AVBSFContext *ctx, AVPacket *pkt);
int av_bsf_receive_packet(AVBSFContext *ctx, AVPacket *pkt); // Free
void av_bsf_free(AVBSFContext **ctx);
FFmpeg—— Bitstream Filters 作用的更多相关文章
- iOS: FFMpeg编译和使用问题总结
iOS: FFmpeg编译和使用问题总结 折磨了我近一周多时间的FFmpeg库编译问题终于解决了,必须得把这一段时间来遇到过的坑全写出来.如果急着解决问题,编译最新版本的FFmpeg库请直接看第二部分 ...
- FFmpeg解码H264及swscale缩放详解
本文概要: 本文介绍著名开源音视频编解码库ffmpeg如何解码h264码流,比较详细阐述了其h264码流输入过程,解码原理,解码过程.同时,大部分应用环境下,以原始码流视频大小展示并不是最佳方式,因此 ...
- iOS: FFmpeg编译和使用 学习
ffmpeg是一个多平台多媒体处理工具,处理视频和音频的功能非常强大.目前在网上搜到的iOS上使用FFMPEG的资料都比较陈旧,而FFMPEG更新迭代比较快: 且网上的讲解不够详细,对于初次接触FFM ...
- FFmpeg源代码简单分析:configure
===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...
- Xcode编译ffmpeg(2)
iOS: FFmpeg编译和使用问题总结 折磨了我近一周多时间的FFmpeg库编译问题终于解决了,必须得把这一段时间来遇到过的坑全写出来.如果急着解决问题,编译最新版本的FFmpeg库请直接看第二部分 ...
- 【图像处理】FFmpeg解码H264及swscale缩放详解
http://blog.csdn.net/gubenpeiyuan/article/details/19548019 主题 FFmpeg 本文概要: 本文介绍著名开源音视频编解码库ffmpeg如何 ...
- ffmpeg编译参数详解
Usage: configure [options]用 法:configure [选项]Options: [defaults in brackets after descriptions]选 项: ...
- FFMPEG ./configure 参数及意义
FFMPEG版本:2.6.2,编译环境:ubuntu 14.4. 不同版本的FFMPEG参数可能不同,可在FFMPEG目录下使用以下命令查看 ./configure --help --help pri ...
- [原]如何用Android NDK编译FFmpeg
我们知道在Ubuntu下直接编译FFmpeg是很简单的,主要是先执行./configure,接着执行make命令来编译,完了紧接着执行make install执行安装.那么如何使用Android的ND ...
随机推荐
- 9Front fqa 目录
9Front System 9Front 常见问答(fqa) 注意! 9front dash1 手册是由 9front 用户编写的. 这些用户有能做的,有不能写的:那些不能写的写了这本电子杂志.-- ...
- HBase Hive
Hbase数据管理 Hbase就是Hadoop database Hbase是列式数据库 因此Hbase特别适合寻找按照时间排序寻找Top n的场景 Hive数据管理 基于 Hadoop 文件系统的数 ...
- 使用nohup不产生log文件方法
思想 无法阻止nohup产生日志可以将其定向到空文件实现 实现 $ nohup xxx >/dev/null 2>&1 &
- Object与byte[]互转
User user=new User(); user.setId("bonnie"); user.setAge("10"); //Object转byte[] B ...
- Python 高维数组“稀疏矩阵”scipy sparse学习笔记
scipy 里面的sparse函数进行的矩阵存储 可以节省内存 主要是scipy包里面的 sparse 这里目前只用到两个 稀疏矩阵的读取 sparse.load() 转稀疏矩阵为普通矩阵 spars ...
- mybatis一级缓存和二级缓存(一)
一级缓存: 就是Session级别的缓存.一个Session做了一个查询操作,它会把这个操作的结果放在一级缓存中. 如果短时间内这个session(一定要同一个session)又做了同一个操作,那么h ...
- Vue 实例挂载的实现(六)
Vue 中我们是通过 $mount 实例方法去挂载 vm 的,$mount 方法在多个文件中都有定义,如 src/platform/web/entry-runtime-with-compiler.js ...
- 使用 C++11 编写可复用多线程任务池
类的功能 Task (任务基类) 该类主要实现一个任务类 virtual int doWork() = 0; TaskQueue (任务队列) 该类主要针对任务的存储.删除.撤回等状态做管理 Thre ...
- Codeforces Round #601 (Div. 2) B Fridge Lockers
//题目要求的是每一个点最少要有两条边连接,所以可以先构成一个环.然后再把剩余的最短的边连接起来 #include<iostream> #include<algorithm> ...
- SGD 讲解,梯度下降的做法,随机性。理解反向传播
SGD 讲解,梯度下降的做法,随机性.理解反向传播 待办 Stochastic Gradient Descent 随机梯度下降没有用Random这个词,因为它不是完全的随机,而是服从一定的分布的,只是 ...