题目大意:

输入n k,n头牛 k个品种

接下来n行描述每头牛的品种

输出无法找出的最短子序列的长度

Sample Input

14 5
1
5
3
2
5
1
3
4
4
2
5
1
2
3

Sample Output

3

Hint

All the single digit 'sequences' appear. Each of the 25 two digit sequences also appears. Of the three digit sequences, the sequence 2, 2, 4 does not appear.

 
开始一直不理解题意 
其实需要注意的是 如 11  22  33 或是 254 111 这类都属于其子序列 
其实这个子序列不需要有序 就是任意组合 想明白这个就懂了
 
解题思路来自 http://blog.csdn.net/thinfatty/article/details/75949410
考虑长度为2的排列的情况,我们知道,
假如说在a~b的位置出现了1~k(可以多次出现),
而在c~d的位置也出现了1~k(可以多次出现),
其中a<b<c<d,
那么必定2的排列都齐了。两两配对嘛。
所以一个长度为len的排列全部到齐的条件是,
存在len个不交叉的1~k的段,
不交叉的意思就是没有相同覆盖的地方。
 
比如说 123
在132123213中能找到不重复的三段123
即 132 123 213 那么123所有的长度为3的任意组合都能在序列中找到
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
int main(){
int n,k;
while(~scanf("%d%d",&n,&k))
{
int ans=,flag[],tmp,t=;
memset(flag,INF,sizeof(flag));
while(n--)
{
scanf("%d",&tmp);
if(flag[tmp]!=ans)
{
flag[tmp]=ans;
if(++t==k) ans++,t=;
//printf("tmp:%d flag[tmp]:%d ans:%d\n",tmp,flag[tmp],ans);
}
}
printf("%d\n",ans);
}
return ;
}

USACO 2004 Open The Cow Lineup /// oj25965的更多相关文章

  1. H-The Cow Lineup(POJ 1989)

    The Cow Lineup Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5367   Accepted: 3196 De ...

  2. 3377: [Usaco2004 Open]The Cow Lineup 奶牛序列

    3377: [Usaco2004 Open]The Cow Lineup 奶牛序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 16  Solved ...

  3. bzoj 3048[Usaco2013 Jan]Cow Lineup 思想,乱搞 stl

    3048: [Usaco2013 Jan]Cow Lineup Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 237  Solved: 168[Subm ...

  4. bzoj3048[Usaco2013 Jan]Cow Lineup 尺取法

    3048: [Usaco2013 Jan]Cow Lineup Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 225  Solved: 159[Subm ...

  5. BZOJ_3048_[Usaco2013 Jan]Cow Lineup _双指针

    BZOJ_3048_[Usaco2013 Jan]Cow Lineup _双指针 Description Farmer John's N cows (1 <= N <= 100,000) ...

  6. poj-1989 The Cow Lineup

    The Cow Lineup Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5587 Accepted: 3311 Descri ...

  7. [bzoj 3048] [Usaco2013 Jan]Cow Lineup

    [bzoj 3048] [Usaco2013 Jan]Cow Lineup Description 给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿 ...

  8. USACO 奶牛抗议 Generic Cow Protests

    USACO 奶牛抗议 Generic Cow Protests Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望 ...

  9. USACO 2011 November Cow Lineup /// map set 尺取法 oj25279

    题目大意: 输入n 接下来n行描述n头牛的编号num和品种id 得到包含所有id的最短段 输出最短段的编号差 Sample Input 625 726 115 122 320 130 1 Sample ...

随机推荐

  1. CSS:CSS 轮廓(outline)

    ylbtech-CSS:CSS 轮廓(outline) 1.返回顶部 1. CSS 轮廓(outline) 轮廓(outline)是绘制于元素周围的一条线,位于边框边缘的外围,可起到突出元素的作用. ...

  2. (转)C#中String跟string的“区别”

    string是c#中的类,String是.net Framework的类(在C# IDE中不会显示蓝色) C# string映射为.net Framework的String 如果用string,编译器 ...

  3. Linux Kernel Development有关内存管理

    1 Pages Page的概念来源为处理器Processor的部件MMU(Memory Management Unit),MMU通过设置好的页表(通过设置CR3寄存器,指向页目录所在的物理内存)对内存 ...

  4. BZOJ 2460 & 洛谷 P4570 [BJWC2011]元素 (线性基 贪心)

    题目链接: 洛谷 BZOJ 题意 给定 \(n\) 个矿石,每个矿石有编号和魔力值两种属性,选择一些矿石,使得魔力值最大且编号的异或和不为 0. 思路 线性基 贪心 根据矿石的魔力值从大到小排序. 线 ...

  5. 前端(十三)—— JavaScript高级:回调函数、闭包、循环绑定、面向对象、定时器

    回调函数.闭包.循环绑定.面向对象.定时器 一.函数高级 1.函数回调 // 回调函数 function callback(data) {} // 逻辑函数 function func(callbac ...

  6. divide方法

    java.math.BigDecimal.divide(BigDecimal divisor, RoundingMode roundingMode) 返回一个BigDecimal,其值为(this/除 ...

  7. struts基础

    六个基本包 struts2-core-2.1.6.jar :开发的核心类库 freemarker-2.3.13.jar :struts2的UI标签的模板使用freemarker编写 commons-l ...

  8. 7年Java后端被淘汰,一路北漂辛酸史。。。

    作者:春天花会开foryou oschina.net/question/3465562_2281392 今天分享一位同行的经历: 本人Java开发6年半不到7年的样子. 英语专业,临毕业跟着隔壁专业去 ...

  9. C# 反射入门

    反射 别的用处先不管,至少在WinForm登录后的权限控制上有大用,比如登录后的窗体左侧树,点击通过字符串创建出窗体实例 案例如下图 AssTest类很简单 namespace assemblyTes ...

  10. yppasswd, ypchfn, ypchsh - 修改你在NIS数据库中的密码

    SYNOPSIS(总览) yppasswd [-f] [-l] [-p] [user] ypchfn [user] ypchsh [user] DESCRIPTION(描述) 在Linux中,标准的 ...