Dimensionality in statistics refers to how many attributes a dataset has. For example, healthcare data is notorious for having vast amounts of variables (e.g. blood pressure, weight, cholesterol level). In an ideal world, this data could be represented in a spreadsheet, with one column representing each dimension. In practice, this is difficult to do, in part because many variables are inter-related (like weight and blood pressure).

Note: Dimensionality means something slightly different in other areas of mathematics and science. For example, in physics, dimensionality can usually be expressed in terms of fundamental dimensions like mass, time, or length. Inmatrix algebra, two units of measure have the same dimensionality if both statements are true:

  1. A function exists that maps one variable onto another variable.
  2. The inverse of the function in (1) does the reverse.

High Dimensional Data

High Dimensional means that the number of dimensions is staggeringly惊人地 high — so high that calculations become extremely difficult. With high dimensional data, the number of features can exceed the number of observations. For example, microarrays, which measure gene expression, can contain tens of hundreds of samples. Each sample can contain tens of thousands of genes.

1. What is the dimension of time series.

Classification of time series is a somewhat tricky matter. Most classification algorithms have an implicit assumption that the data you are classifying are stationary, and they usually work in vector spaces.

So there are two "things" that can be multidimensional here: your original time series and the result of your preprocessing before feeding data to a classifier.

To answer your question straight: a time series is multidimensional if it is a measurement of more than one variable throughout time, it is not multidimensional because of its length.
 
How would you go about classifying time series? Well, it depends on your intent, on the nature of the process you are measuring, etc. But in general terms, you will split your time series in small fragments and construct a multi-dimensional vector that represents each fragment, or you will fit a model (autoregressive, splines, whatever) and use the obtained parameters of the model as the vector representing that fragment. Additionally, you may synthesize new time series from the first one: derivatives, integratives, filtered time series, and build a truly multi-dimensional time series, that you will still need to preprocess.
 
The key is that classifiers will, in general, not treat time explicitely, you have to hide the temporal dimension from your time series and find a way to encode it in a single vector.

Supplementary knowledge:

1. downsample.降采样

2. curse of dimensionality维度灾难

当维数提高时,空间的体积提高太快,因而可用数据变得很稀疏。稀疏性对于任何要求有统计学意义的方法而言都是一个问题,为了获得在统计学上正确并且有可靠的结果,用来支撑这一结果所需要的数据量通常随着维数的提高而呈指数级增长。

wiki

3. 缩写iid: independent and identically distributed random variables. 独立同分布.

Reference:

1. 时间序列数据(2)——维度篇

2. What is meant by 'high dimensional' time series?

3. 万物皆Embedding,从经典的word2vec到深度学习基本操作item2vec

Dimensionality and high dimensional data: definition, examples, curse of..的更多相关文章

  1. CREATE TABLE——数据定义语言 (Data Definition Language, DDL)

    Sql语句分为三大类: 数据定义语言,负责创建,修改,删除表,索引和视图等对象: 数据操作语言,负责数据库中数据的插入,查询,删除等操作: 数据控制语言,用来授予和撤销用户权限. 数据定义语言 (Da ...

  2. How to Delete XML Publisher Data Definition Template

    DECLARE  -- Change the following two parameters  VAR_TEMPLATECODE  VARCHAR2(100) := 'CUX_CHANGE_RPT1 ...

  3. Hive 5、Hive 的数据类型 和 DDL Data Definition Language)

    官方帮助文档:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL Hive的数据类型 -- 扩展数据类型data_t ...

  4. sql基础之DDL(Data Definition Languages)

    好久没写SQL语句了,复习一下. DDL数据定义语言,DDL定义了不同的数据段.数据库.表.列.索引等数据库对象的定义.经常使用的DDL语句包含create.drop.alter等等. 登录数据:my ...

  5. 02-2--数据库MySQL:DDL(Data Definition Language:数据库定义语言)操作数据库中的表(二)

    DDL对数据库的操作:http://blog.csdn.net/baidu_37107022/article/details/72334560 DDL对数据库中表的操作 1)方法概览 2)演示 //创 ...

  6. 数据定义语言(DDL Data Definition Language)基础学习笔记

    创建数据库 create database if not exists STUDY character set utf8 ; 查看新建数据库的语句 SHOW CREATE DATABASE STUDY ...

  7. MySQL中的DDL(Data Definition Language,数据定义语言)

    create(创建表) 标准的建表语句: create table [模式名.]表名 ( #可以有多个列定义 columnName1 dataType [default expr(这是默认值)], . ...

  8. mysql数据库-mysql数据定义语言DDL (Data Definition Language)归类(六)

    0x01 创建数据库并指定字符集和排序规则 -- 三种实例写法 create database temptab2 character set utf8 collate utf8_general_ci; ...

  9. Seven Techniques for Data Dimensionality Reduction

    Seven Techniques for Data Dimensionality Reduction Seven Techniques for Data Dimensionality Reductio ...

随机推荐

  1. 《茶余饭后小故事》MV*、MVC、MVP、MVVM的前世今生

    今天我们讲讲历史,讲讲故事,不扯高深术语. MV*表示的意思是:M(Model逻辑层) + View(视图层) + *(中间者).上帝提出了这个逻辑与视图分离,用中间者进行连接的伟大思想,并将实现这个 ...

  2. 剑指offer-拓展训练-字符的所有组合-全组合

    /* 题目: 给定不含重复字符字符串的全组合. */ /* 思路: 递归法. 例给定abc,输出的组合长度为1,2,3. 对于长度为2的组合,分选择a(ab,ac)和不选择a的情况(bc). 选择a, ...

  3. 【46】谷歌 Inception 网络简介Inception(2)

    Inception 网络(Inception network) 在上节笔记中,你已经见到了所有的Inception网络基础模块.在本节笔记中,我们将学习如何将这些模块组合起来,构筑你自己的Incept ...

  4. 《趣谈 Linux 操作系统》学习笔记(二):对 Linux 操作系统的理解

    首先,我们知道操作系统是管理和控制计算机硬件与软件资源的计算机程序.这里把操作系统想象为一个软件外包公司,其内核就相当于这家外包公司的老板,那么我们可以把自己的角色切换成这家外包公司的老板,设身处地的 ...

  5. P3759 [TJOI2017]不勤劳的图书管理员 [树套树]

    树套树是什么啊我不知道/dk 我只知道卡常数w // by Isaunoya #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC o ...

  6. oracle卸载步骤

    一.删除产品 1. 停服务,进入下图,一个个删除Oracle产品,再执行卸载 二.清注册表,开始-搜索- 输入regedit,进入注册表 1.选择HKEY_LOCAL_MACHINE\SOFTWARE ...

  7. git项目分支管理

    分支管理 创建项目时,会针对不同环境创建两个常设分支(也可以算主分支,永久不会删除): master :生产环境的稳定分支,生产环境基于该分支构建.仅用来发布新版本,除了从 release 测试分支或 ...

  8. MySQL之分库分表

    MySQL之分库分表(MyCAT实现)   分库分表介绍 随着微服务这种架构的兴起,我们应用从一个完整的大的应用,切分为很多可以独立提供服务的小应用.每个应用都有独立的数据库. 数据的切分分为两种: ...

  9. 接口测试(http 和 rpc)

    接口测试主要分HTTP和RPC两类,RPC类型里面以Dubbo较为知名.互联网微服务架构,两种接口都需要做接口测试的,不管是业务测试还是回归测试: Dubbo:Java栈的互联网公司比如阿里.美团.5 ...

  10. 使用xshell

    将选定的文本自动复制到剪贴板 并且 鼠标向右按钮定义为粘贴剪贴板内容