[bzoj3930] [洛谷P3172] [CQOI2015] 选数
Description###
我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。
Input###
输入一行,包含4个空格分开的正整数,依次为N,K,L和H。
Output###
输出一个整数,为所求方案数。
Sample Input###
2 2 2 4
Sample Output###
3
HINT###
样例解释
所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
对于100%的数据,1<=N,K<=109,1<=L<=H<=109,H-L<=10^5
想法##
最初的想法是莫比乌斯反演,但写了一半发现好麻烦,还要杜教筛之类的。。。
于是放弃!上普通容斥!
我们发现 \(H-L \leq 10^5\) ,那对于这个范围内,任意两不同的数的gcd \(\leq 10^5\)
(这个应该还是挺显然的。这两个数的差一定是它们gcd的倍数)
我们先把L与H处理一下,都除以K,将问题转变为求某一区间\([l,r]\)内选N个数gcd为1的方案数。
设 \(f[i]\) 表示该区间内选N个数(这N个数不全相同),gcd为i的方案数 (一会儿我会解释为什么要N个数不全相同)
那么 $f[i]=[r/i-l/i]^n - [r/i-l/i] - \sum\limits_{i|j} f[j] $
其中减去的 $[r/i-l/i] $ 便是N个数都相同的情况。
最后需要特判一下是否N个数可以都取K,若可以答案为\(f[1]+1\),否则为\(f[1]\)
好,现在解释一下为什么\(f[i]\)中选的N个数不全相同(想了好久才明白qwq)
一开始我想的是,计算\(f[i]\)时不需减掉 \([r/i-l/i]\),因为所有 \(f[i]\) 都带上 \((i,i,i,i,…)\) ,在 $ - \sum\limits_{i|j} f[j]$ 时肯定会被消掉。
可是,对于区间\([l,r]\)中的任意一个数x, \((x,x,x,x,x…)\) 的gcd为x,可能是超过\(10^5\)的。
而我们的\(f[i]\)最多只到\(10^5\),所以如果\(f[i]\)包括N个数都相同的情况的话,会有一些 \((x,x,x,x,…)\) 没有被减掉
而我们又知道,若N个数都相同且gcd为K,那只有这N个数都为K这一种情况。对这种情况特判一下就可以了。
一个小总结##
莫比乌斯反演与普通容斥的异同:
对于这道题的条件,两者都可以由 \(F(i)=f(i)+f(2i)+f(3i)+…\) 的式子写成,其中\(F(i)\)极其好求,而\(f(i)\)是我们需要的答案。
莫比乌斯反演是只通过\(F()\)求\(f()\),用到莫比乌斯函数
而普通容斥的做法就是递推,通过\(F()\)及\(f()\) 求\(f()\)
一般来说莫比乌斯反演时间复杂度可以优化到\(O(\sqrt{n})\),比普通容斥快;而普通容斥比莫比乌斯反演好写许多。
所以要具体问题具体分析,再决定用哪种做法。
代码##
#include<cstdio>
#include<iostream>
#include<algorithm>
#define P 1000000007
using namespace std;
typedef long long ll;
const int N = 100005;
ll Pow_mod(int x,int y){
ll ret=1;
while(y){
if(y&1) ret=(ret*x)%P;
x=((ll)x*x)%P; //别忘了临时转long long !!!
y>>=1;
}
return ret;
}
int n,K,L,H,l,r,m;
ll f[N];
int main()
{
scanf("%d%d%d%d",&n,&K,&L,&H);
l=(L-1)/K; r=H/K;
m=r-l;
int x;
for(int i=m;i>0;i--){
x=r/i-l/i;
if(x<=0) continue;
f[i]=(Pow_mod(x,n)-x+P)%P;
for(int j=i*2;j<=m;j+=i)
f[i]=(f[i]-f[j]+P)%P;
}
if(L<=K && K<=H) f[1]=(f[1]+1)%P;
printf("%lld\n",f[1]);
return 0;
}
[bzoj3930] [洛谷P3172] [CQOI2015] 选数的更多相关文章
- 洛谷P3172 [CQOI2015]选数(容斥)
传送门 首先,进行如下处理 如果$L$是$K$的倍数,那么让它变成$\frac{L}{K}$,否则变成$\frac{L}{K}+1$ 把$H$变成$\frac{H}{K}$ 那么,现在的问题就变成了在 ...
- 【洛谷p1036】选数
(一定要声明我太蒟了,这个题扣了一上午……) 算法标签: …… dfs真的不是我所擅长的qwq,这道题的思路其实很简单,就是先dfs搜索所有可能的和,然后判断是不是质数.说着好说,然鹅并不好写: 第一 ...
- P3172 [CQOI2015]选数(莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P3172 [题解] https://www.luogu.org/blog/user29936/solutio ...
- luogu P3172 [CQOI2015]选数
传送门 颓了一小时柿子orz 首先题目要求的是\[\sum_{x_1=l}^{r}\sum_{x_2=l}^{r}...\sum_{x_n=l}^{r}[gcd(x_1,x_2...x_n)=k]\] ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- [CQOI2015]选数(莫比乌斯反演,杜教筛)
[CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...
随机推荐
- Linux 内核类设备
一个类的真正目的是作为一个是该类成员的设备的容器. 一个成员由 struct class_device 来表示: struct class_device { struct kobject kobj; ...
- XSS攻击及防范
1.什么是XSS攻击 跨站脚本攻击(Cross Site Scripting),攻击者往Web页面里插入恶意Script代码,当用户浏览该页之时,嵌入其中Web里面的Script代码会被执行,从而达到 ...
- JQuery仿购物网站放大镜特效所遇问题及思考
JQuery仿购物网站放大镜特效所遇问题及思考 先贴下效果图,然后描述起来也就不会不知道我在说什么了. 我碰到的问题一: 一开始我自己总结了是因为两个小原因导致的①使用了mouseover,mouse ...
- C# 发送电子邮件(smtp)
相关享目托管在github: https://github.com/devgis/CSharpCodes
- android studio 配置HTTP proxy
Android SDK在线更新镜像服务器 南阳理工学院镜像服务器地址: mirror.nyist.edu.cn 端口:80 中国科学院开源协会镜像站地址: IPV4/IPV6: mirrors.ope ...
- 21.模块的执行以及__name__
执行结果: "E:\Program Files\JetBrains\PycharmProjects\python_demo\venv\Scripts\python.exe" &qu ...
- Java锁对象和条件对象的使用
锁对象 临界区:临界区是一个特殊的代码段,该代码段访问某种特殊的公共资源,该资源同一时间只允许一个线程使用. Java中可以使用锁对象创造一个临界区: myLock.lock(); try { 关键代 ...
- Acunetix 11 配置详解
Acunetix 扫描配置 Full Scan– 使用Full Scan来发起一个扫描的话,Acunetix会检查所有可能得安全漏洞. High Rish Vulnerabilities–这个扫描选项 ...
- 【汇编】2.第一个程序:hello world
前言 在上篇博文 [汇编]1.汇编环境的搭建:DOSBox的安装 中,我们完成了 1.汇编环境模拟器DOSBox的安装. 2.汇编编译相关程序MASM6的下载. 在上篇文章的最后我们提到了挂载DOS程 ...
- 2013 ACM-ICPC亚洲区域赛南京站C题 题解 轮廓线DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4804 题目大意 给你一个 \(n \times m\) 的矩形区域.你需要用 \(1 \times 1 ...