DFA与NFA的等价性,DFA化简
等价性
对于每个NFA M存在一个DFA M’,使得L(M)=L(M’)--------等价性证明,NFA的确定化

假定NFA M=<S, Σ, δ, S 0 , F>,我们对M的状态转换图进行以下改造:

解决初始状态唯一性:引进新的初态结点X和终态结点Y,X,Y∉S,从X到S 0中任意状态结点连一条ε箭弧, 从F中任意状态结点连一条ε箭弧到Y

简化弧上的标记:对M的状态转换图进一步施行替换,其中k是新引入的状态


逐步把这个图转变为每条弧只标记为Σ上的一个字符或ε,最后得到一个NFA M’,显然L(M’)=L(M)




把表看成状态转换矩阵,子集视为状态,转换表唯一刻划了一个确定的有限自动机M,初态是ε-closure({X}),终态是含有原终态Y的子集,不难看出,这个DFA M与M’等价对于每个NFA M存在一个DFA M ’ ,使得 L(M)=L(M’),NFA和DFA等价


确定有限自动机的化简
对于给定的DFA M,寻找一个状态数比M少的DFAM’,使得L(M)=L(M’),假设s和t为M的两个状态,称s和t等价:如果从状态s出发能读出某个字α而停止于终态,那么同样,从t出发也能读出α而停止于终,两个状态不等价,则称它们是可区别的态;反之亦然
基本思想
把M的状态集划分为一些不相交的子集,使得任何两个不同子集的状态是可区别的,而同一子集的任何两个状态是等价的, 最后,让每个子集选出一个代表,同时消去其他状态。
对DFA的状态集合S进行第一次划分,正确的分法是:终态和非终态

{0} {1} {2} {3, 4, 5, 6}



DFA与NFA的等价性,DFA化简的更多相关文章
- NFA转换为等价的DFA
在编译系统中,词法分析阶段是整个编译系统的基础.对于单词的识别,有限自动机FA是一种十分有效的工具.有限自动机由其映射f是否为单值而分为确定的有限自动机DFA和非确定的有限自动机NFA.在非确定的有限 ...
- 正规式与正规集,DFA与NFA
词法分析器的设计 词法分析器的功能:输入源程序.输出单词符号 词法分析器的设计:给出程序设计语言的单词规范--单词表, 对照单词表设计识别该语言所有单词的状态转换图, 根据状态转换图编写词法分析程序 ...
- DFA化简
首先是未化简DFA的转换表 NFA状态 DFA状态 a b {0,1,2,4,7} A B C {1,2,3,4,6,7,8} B B D {1,2,4,5,6,7} C B C {1,2,4,5,6 ...
- 《编译原理》构造与正规式 (0|1)*01 等价的 DFA - 例题解析
<编译原理>构造与正规式 (0|1)*01 等价的 DFA - 例题解析 解题步骤: NFA 状态转换图 子集法 DFA 的状态转换矩阵 DFA 的状态转图 解: 已给正规式:(0|1)* ...
- 编译原理-DFA的化简(最小化)
对于给定的DFA M,寻找一个状态数比M小的DFA M'使得L(M)=L(M') 1.状态的等价性: 假设s和t为M的两个状态 ①若分别从状态s和状态t出发都能读出某个字α而停止于终态,则 ...
- 编译原理实验 NFA子集法构造DFA,DFA的识别 c++11实现
实验内容 将非确定性有限状态自动机通过子集法构造确定性有限状态自动机. 实验步骤 1,读入NFA状态.注意最后需要设置终止状态. 2,初始态取空,构造DFA的l0状态,将l0加入未标记状态队列que ...
- DFA和NFA的区别
正则表达式引擎分成两类,一类称为DFA(确定性有穷自动机),另一类称为NFA(非确定性有穷自动机).两类引擎要顺利工作,都必须有一个正则式和一个文本串,一个捏在手里,一个吃下去.DFA捏着文本串去比较 ...
- NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例
1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法 ...
- 2020-BUAA OO-面向对象设计与构造-HW11中对ageVar采用缓存优化的等价性证明(包括溢出情况)
HW11中对ageVar采用缓存优化的等价性证明(包括溢出情况) 概要 我们知道,第三次作业里age上限变为2000,而如果缓存年龄的平方和,2000*2000*800 > 2147483647 ...
随机推荐
- 使用Razor 使用Razor表达式处理命名空间 精通ASP-NET-MVC-5-弗瑞曼
- Apache Commons 相关工具类使用
Apache Commons Apache Commons包含了很多开源的工具,用于解决平时编程经常会遇到的问题,减少重复劳动.下面是我这几年做开发过程中自己用过的工具类做简单介绍. 组件 功能介绍 ...
- 开源项目SMSS发开指南(四)——SSL/TLS加密通信详解
本文将详细介绍如何在Java端.C++端和NodeJs端实现基于SSL/TLS的加密通信,重点分析Java端利用SocketChannel和SSLEngine从握手到数据发送/接收的完整过程.本文也涵 ...
- PKU-2723 Get Luffy Out(2-SAT+二分)
Get Luffy Out 题目链接 Ratish is a young man who always dreams of being a hero. One day his friend Luffy ...
- CSS学习 | 思维导图
CSS样式
- 线程池之 ThreadPoolExecutor
线程池之 ThreadPoolExecutor + 面试题 线程池介绍 线程池(Thread Pool):把一个或多个线程通过统一的方式进行调度和重复使用的技术,避免了因为线程过多而带来使用上的开销. ...
- 面试官:能解释一下javascript中bind、apply和call这三个函数的用法吗
一.前言 不知道大家还记不记得前几篇的文章:<面试官:能解释一下javascript中的this吗> 那今天这篇文章虽然是介绍javascript中bind.apply和call函数 ...
- 【动手学pytorch】softmax回归
一.什么是softmax? 有一个数组S,其元素为Si ,那么vi 的softmax值,就是该元素的指数与所有元素指数和的比值.具体公式表示为: softmax回归本质上也是一种对数据的估计 二.交叉 ...
- C++标准模板库(STL)学习笔记
C++标准模板库(STL) 一.vector(变长数组) 1.使用vector #include <vector> using namespace std; 2.vector的定义 vec ...
- HDU_4403
http://acm.hdu.edu.cn/showproblem.php?pid=4403 数值不大,暴力枚举,枚举每一种划分,然后枚举每一种等号位置. #include<iostream&g ...