题目

描述

题目大意

给你一堆小串,每个小串都有一定的分数。

让你构造一个字符串,若子串中出现了之前的小串,就可以得到对应的分数(可以重复)

问最大分数。


思考历程

一看这题就知道是什么字符串方面的算法。

然后就很自然地想到AC自动机,多串匹配嘛!

接下来就想到建字符串的过程中,一个指针在AC自动机上跳来跳去……

先建出AC自动机,然后算出到达每个节点的贡献。

对于每个节点,枚举字母,若没有出边,就想着用failfailfail往上跳,然后将出边连向那个地方。

从此AC自动机变成了一张有向图,每个点都有262626条出边。题目就转成了在这张有向图上,走mmm步所的最大点权和。

感觉转化到这一步之后就想不出什么了,考虑过最长路一类的做法,都是没有成功。

于是我也不追求满分了,直接跑DP水分。


正解

事实上……

题目中有这么一句话:字符串的长度和不超过200200200。

知道这一切之后我疯了。

既然这样,那不就是一个裸的矩阵乘法吗?

时间就是2003lg⁡m200^3\lg m2003lgm,在6000ms中肯定是可以过的。


代码

using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
int n;
long long m;
int a[210];
char str[210];
struct Node{
int c[26],fail;
int v;
} d[210];
int cnt,root;
inline void insert(char *s,int val){
int t=root;
for (;*s;++s){
if (!d[t].c[*s-'a'])
d[t].c[*s-'a']=++cnt;
t=d[t].c[*s-'a'];
}
d[t].v+=val;
}
inline void build(){//求fail,顺便做了对空儿子的处理。显然这两步是可以放在一起的
static int q[210];
int head=0,tail=1;
d[root].fail=root;
q[1]=root;
do{
int t=q[++head];
for (int i=0;i<26;++i){
if (d[t].c[i])
q[++tail]=d[t].c[i];
if (t==root){
if (d[t].c[i])
d[d[t].c[i]].fail=root;
else
d[t].c[i]=root;
continue;
}
int nxt=d[t].fail;
while (nxt!=root && !d[nxt].c[i])
nxt=d[nxt].fail;
if (d[nxt].c[i]){
if (d[t].c[i]){
d[d[t].c[i]].fail=d[nxt].c[i];
d[d[t].c[i]].v+=d[d[nxt].c[i]].v;
}
else
d[t].c[i]=d[nxt].c[i];
}
else{
if (d[t].c[i])
d[d[t].c[i]].fail=root;
else
d[t].c[i]=root;
}
}
}
while (head!=tail);
}
struct Matrix{
long long mat[210][210];
inline void operator*=(Matrix &b){
static Matrix res;
memset(res.mat,200,sizeof res);
for (int i=1;i<=cnt;++i)
for (int j=1;j<=cnt;++j)
for (int k=1;k<=cnt;++k)
res.mat[i][j]=max(res.mat[i][j],mat[i][k]+b.mat[k][j]);
memcpy(mat,res.mat,sizeof mat);
}
} f;
inline void get_pow(Matrix &x,long long m){
static Matrix res;
memset(res.mat,200,sizeof res);
for (int i=1;i<=cnt;++i)
res.mat[i][i]=0;
for (;m;m>>=1,x*=x)
if (m&1)
res*=x;
memcpy(x.mat,res.mat,sizeof x);
}
int main(){
cnt=root=1;
scanf("%d%lld",&n,&m);
for (int i=1;i<=n;++i)
scanf("%d",&a[i]);
for (int i=1;i<=n;++i){
scanf("%s",str);
insert(str,a[i]);
}
build();
memset(f.mat,200,sizeof f);
for (int i=1;i<=cnt;++i)
for (int j=0;j<26;++j)
f.mat[i][d[i].c[j]]=d[d[i].c[j]].v;
get_pow(f,m);
long long ans=0;
for (int i=1;i<=cnt;++i)
ans=max(ans,f.mat[1][i]);
printf("%lld\n",ans);
return 0;
}

总结

不想说什么……

如果不是没有看到,我这题早就AC的……

[JZOJ4649] 【NOIP2016提高A组模拟7.17】项链的更多相关文章

  1. 【JZOJ4787】【NOIP2016提高A组模拟9.17】数格子

    题目描述 输入 输出 样例输入 1 10000 3 10000 5 10000 0 0 样例输出 1 11 95 数据范围 每个测试点数据组数不超过10组 解法 状态压缩动态规划. 设f[i][j]表 ...

  2. 【NOIP2016提高A组模拟9.17】序列

    题目 分析 首先用\(a_i\)表示达到目标的步数\(B_i-A_i(mod 4)\) 根据粉刷栅栏,先不管mod 4的情况,答案就是\(\sum\max(a_i-a_{i+1},0)\) 那我们刚才 ...

  3. NOIP2016提高A组模拟9.17总结

    第一题,典型的隔板问题, 但是我忘记隔板问题怎么打,一开始在花了1小时,还是没想出来,果断弃疗, 最后的40分钟,我打完了第二题,接着又用了20分钟推敲出一种极其猥琐的式子来代替,可惜预处理的阶乘忘记 ...

  4. 【NOIP2016提高A组模拟9.17】数格子

    题目 分析 设表示每一行的状态,用一个4位的二进制来表示,当前这一行中的每一个位数对下一位有没有影响. 设\(f_{i,s}\)表示,做完了的i行,其状态为s,的方案数. 两个状态之间是否可以转移就留 ...

  5. 【NOIP2016提高A组模拟9.17】小a的强迫症

    题目 分析 题目要求第i种颜色的最后一个珠子要在第i+1种颜色的最后一个珠子之前, 那么我们从小到大枚举做到第i种,把第i种的最后一颗珠子取出,将剩下的\(num(i)-1\)个珠子插入已排好的前i- ...

  6. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)总结

    考的还ok,暴力分很多,但有点意外的错误. 第一题找规律的题目,推了好久.100分 第二题dp,没想到. 第三题树状数组.比赛上打了个分段,准备拿60分,因为时间不够,没有对拍,其中有分段的20分莫名 ...

  7. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Binary

    题目 分析 首先每个数对\(2^i\)取模.也就是把每个数的第i位以后删去. 把它们放进树状数组里面. 那么当查询操作, 答案就位于区间\([2^i-x,2^{i-1}-1-x]\)中,直接查询就可以 ...

  8. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Value

    题目 分析 易证,最优的答案一定是按\(w_i\)从小到大放. 我们考虑dp, 先将w从小到大排个序,再设\(f_{i,j}\)表示当前做到第i个物品,已选择了j个物品的最大值.转移就是\[f_{i, ...

  9. 【NOIP2016提高A组模拟8.17】(雅礼联考day1)Matrix

    题目 分析 假设,我们从\(F_{i,2}\)出发,那么对\(F_{n,n}\)的贡献就是\(某个系数乘以a^{n-i}b^{n-1}r_i\): 同理,如果从\(F_{2,i}\)出发,那么对\(F ...

随机推荐

  1. 1.1两个char类型数据相加后,转化为int类型

    #include<stdio.h> main() { char a = 127; char i=0; char ai=0; ai= a+i; printf("size short ...

  2. QTableWidget学习

    一.这次项目需要用到,可以在tablewidget中添加item,并且可以通过鼠标的右键选项进行一些打开.删除等操作. 1.在构造函数中定制右键菜单选项 ui.tableWidget_2->se ...

  3. spring配置hibernate的sessionFactory

    1.首先通过dataSource来配置sessionFactory <!--读入配置文件 --> <bean id="propertyConfigurer" cl ...

  4. nodejs中命令行和node交互模式的区分

    来自:廖雪峰教程 么么哒~ 命令行模式和Node交互模式 请注意区分命令行模式和Node交互模式. 看到类似C:\>是在Windows提供的命令行模式: 在命令行模式下,可以执行node进入No ...

  5. Dribbble 流行的配色风格是什么?

    Dribbble 是众所周知的设计社群网站,在网站中有许多人分享设计作品,互相交流或从其他设计获取灵感.当然也有不少网站应运而生,例如 Freebbble 可免费下载 Dribbble 数千种设计素材 ...

  6. pytorch clamp 与clamp_区别

    pytorch clamp 与clamp_ ,有下划线的表示修改并付给自身,无下划线的表示需要返回处理后的值,比如: h = k.clamp(min=0) #将结果存入h,k保留原值 k.clamp_ ...

  7. Codeforces Round #567 (Div. 2)自闭记

    嘿嘿嘿,第一篇文章,感觉代码可以缩起来简直不要太爽 打个div2发挥都这么差... 平均一题fail一次,还调不出错,自闭了 又一次跳A开B,又一次B傻逼错误调不出来 罚时上天,E还傻逼了..本来这场 ...

  8. python对urlEncode进行解码

    利用python自带的urlib进行编码和解码,没有什么问题.(https://www.hustyx.com/python/) 但如果是用url编码工具(http://tool.chinaz.com/ ...

  9. JAVA算法之简单排序

    冒泡排序: 在概念上是排序算法中最简单的,但是运行起来非常慢,冒泡排序遵循以下几个规则(假如我们现在要给一队打乱的足球队员排序): 比较两个队员 如果左边的队员比右边的高,则交换位置 向右移动一位,比 ...

  10. CF 540D Bad Luck Island

    一看就是DP题(很水的一道紫题) 设\(dp[i][j][k]\)为留下\(i\)个\(r\)族的人,死去\(j\)个\(s\)族的人,死去\(k\)个\(p\)族的人的概率(跟其他的题解有点差别,但 ...